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1. Introduction

One of the carlicst applications of computers was the processing of visual data. With the benefit of
hindsight, we can sec that this reflects the importance of sight for humans, the difficultics faced by those lacking
sight, and the continuing drive in computer science to automate human abilities.

‘There is currently a surge of interest in image understanding on the part of industry and the military.
Interest scems certain to expand over the next several decades, as the following list of current applications
indicatcs:

o AUTOMATION OF INDUSTRIAI PROCESSES.

Object acquisition by robot arms, for example by "bin picking”.

Automatic guidance of seam welders and cutting tools.

V1.SI-related processes, such as Iead bonding, chip alignment and packaging.

Maonitoring, filtering, and thercby containing the flood of data from oil drill sites or from seismographs.

Providing visual feedback for automatic assembly and repair.

o INSPECTION TASKS

‘I'he inspection of printed circuit boards for spurs, shorts, and bad connections.

Checking the results of casting processes for impuritics and fractures.

Screening medical images such as chromosome slides, cancer smears, x-ray and ultrasound images,

tomography.

Routine screening of plant samplces,

o REMOTE SENSING

Cartography, the antomatic gencration of hill shaded maps, and the registration of satellite images with

terrain maps.

Munitoring traffic along roads, docks, and at airficlds.

Management of lind sesources such as water, forestiy. soil erosion. and crop growth,

Explosation of remate or hostile regions for fossil fiels and nuneral ore depaosits,




o MAKING COMPUTER POWER MORE ACCESSIBLE.
Management information systems that have a communication channcl considerably wider than current
systems that are addressed by typing or pointing.

Document readers (for those that still use paper).

Design aids for architects and mechanical engineers.

¢ MILITARY APPLICATIONS.

Tracking moving objects.

Automatic navigation bascd on passive sensing.

Target acquisition and range finding.

o AIDS FOR THE PARTIALLY SIGHTED.

Systems that read a document and say what was read.

Automatic "guide dog"” navigation systems.
Over the past decade there has been considerable growth in the theoretical base of image understanding
(1U) by computer. This article surveys the current state of that theoretical base. As the intellectual climate
for progress in IU improved, so funding became available for much nceded basic rescarch.  Most of
the work described in this survey was conducted under the Defense Advanced Rescarch Iroject Agency's
(1DARPA) image understanding program at a small number of basic rescarch centers: Carnegic Mcllon
University, the University of Maryland, Massachusctts Institute of Technology, the University of Rochester,
SRI International, Stanford University, the University of Southern California, and Virginia Polytechnic and
State University. The DARDPA 1U program has also produced a number of innovative applications oriented
techniques. For reasons of space, these and other applications arc omitted fron the present discussion.

‘There is a considerable diversity of approaches to processing visual images by computer. As a result,
the boundary between differemt thrusts is often vague, necessarily so. ‘The characteristic feature of 1U is the
construction of rich descriptions from an image, an idea that is made imore precise in the following pages. Of

the nny disciplines closely velated to AU tour are of particular interest 1o the compuier seience conumunity:
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image processing, computcer graphics, computer aided design and manufacture, and pattern recognition. image
processing is primarily concerncd with the transmission, storage, cnhancemcnt, and restoration of images.

‘There arc significant overlaps between [U and image processing, especially in the carly processing opcrations

of edge detection and region finding. William K. Pratt’s book [PRA'T78} is an cxcellent introduction to the -

subject. Computer graphics is concerned primarily with the display of visual information. Considerable atten-
tion has been given to representing points, edges, surfaces, and volumes to facilitate display. The geometry
of perspective and parallel (or orthographic) projection has been studicd in detail. Newman and Sproull’s
INEWMT3] book is a fine introduction. Computer aided design and manufacture (CAD/CAM) also gives
auention w surface representations in order to define paths for numerically controlled tools and for making
design by traditional techniques such as "lofting” amcnable to mathematical analysis. The book by Faux
and Pratt [IFAUXT79) introduces the mathematics of CAD/CAM. Although these three disciplines are closcly
related to HU, sometimes developing similar representations and uncovering similar constraints, they differ

from (U in that they arc not concerned with the interpretation or understanding of images.

Pattern recognition is much more closely related to 1U. Good introductions are available, including Duda
and Hart [DUDAT3] and Pavlidis [PAV].78]. ‘The significant differences between 1U and pattern recognition

are the following:

e pattern recoghition systems arc concerned typically with recognizing the input as one of a (usually)
simall set of possibitities. 1U aims to construct rich desceriptions that can not be enumcrated in advance but
need to be comstructed for cach individual image. Three dimensional scencs, viewed from an arbitrary loca-
tion, give nise 1o a wide variety of occlusion (overlap) relationships. One can hope 10 compute descriptions of

theee-dimensionat kryout but not to reeognise it as an instance of one of a small number of stored prototypes.

o pattern recognition sysiems are mostly concerned with two dimensional images, such as leaf samples
of fingeiprints. When the imiges are of three-dimensional objects, such as engine parts, they are effectively
treated as iwo dimensional. by treating each stable position as a separate object, 1U has dealt extensively with

irce dimensional inmages,
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o Most significantly, pattern recognition systems typically operate dircctly on the image. 1U approaches
to sterco, texture, shape from shading, indeed most visual processes, aperate not on the image but on symbolic

representations that have been computed by carlier processing such as edge detection.

Before we begin the survey proper, we note some common themes that have crystallized over the past

decade.

o Attention has shified from reslﬁ'clions on the domain of application of a vision system 1o restrictions on
visual abilities.

The most fundamental diffcrences between image understanding as it is now, and as it was a decade
ago, stem from the current concentration on topics corresponding to identifiable modules in the hunan visual
system. Substantial progress has been made in, for example, binocular stereo, the extraction of important in-
tensity changes from an image, the interpretation of surface contours, the detcrmination of surface oricntation
from texture, the computation of motion, and the representation of three-dimensional objects. ‘I'he focus of
current research is defined more narrowly in terms of viswal abilities than by restricting attention from the start
t0 a domain of application. 'The depth of analysis is correspondingly greater. Increasingly, the progression is
from general theoretical developments to specific practical applications. The alternative approach of inferring

general principles from work in a limited practical domain is still present, but less so than formerly.

What identifics a particular operation as a distinguishable module in the visual system? Some of the most
solid evidence for the claims of individual modules is offered by psychophysical demonstrations of human
visual abilitics. Care is taken, as far as possible, to isolate a particular source of information and show thit
the perceptual ability in question survives. One particularly intriguing source of evidence for modules in
the human visual system comes from the study of patients with disabilities resulting from brain lesions (for
example Weiskrantz, Warrington, Sanders and Marshall [WEIS74], Marshall and Newcombe [r\MRS 1\l
Stevens [STEV 76). Many psychophysical experiments, seemingly isokating particular modules of the human
visual system. have been reported in the literature. Notable examples include Gibson's demonstration of the

perception of surface shape from texture gradients [GIBSSO). Fand's demonstration of the computation of
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lightness I AND71], [HORN74)}, and Julesz's demonstration of stereoscopic fusion without monocular cues
[JULET1). In some cases there is clear evidence of a human perceptual ability, although sucﬁ cvidence would
hardly be referred to as psychophysical. Horn's work at MIT considers the highly developed human ability
to infer shape from shading [HORN77, WOODS1, IKEU81), Stevens considers the three-dimensional inter-
pretation of surface contours by humans [STEV81). On the other hand, it is equally clear that we do not
have a specific module in our visual system to recognize "ycllow Volkswagens” (sce for cxﬁmple [WEIS73).
It is less clear whether we compute depth directly, as opposed to indirectly through integrating over surface

orientations, or what use we make of directional selectivity or optical flow,

‘The change of focus from a narrowly specified domain of application to a particular module of the human
visual system has had a number of far-reaching consequences for the way U rescarch is conducted. One
consequence has been a sharp decline in the construction of entire vision systems that mobilize knowledge at
all levels, including information specific to some domain of application. In order to complete the construction

of such systems, it is almost incvitable that corners be cut and many overly simplificd assumptions be made.
® Representutions have been developed that make explicit the infornation computed by a module.

A number of representations are discussed in this survey, including the primal sketch, the reflectance
map, intrinsic images, normalized texture property maps, and object representations based on generalized
cones. A simple observation, which nevertheless has profound conscquences, is that not all modules work
directly on the image. Indeced. it scems that few do. Instead, they operate on representations of the informa-
tion computed. or made cxplicit, by other processes. In the case of sterco, Marr and Poggio argue against
correlating the intensity information in the left and right images [MARR79b). Instead, they suggest that cdge
featwe points are matched (sce Section 4.1). Baker and Binford, Amold, and Mayhew and Frisby argue that
niatching should in fact take place on a different representation, called the primal skeicl[BAKEST, ARNOTS,

MAYHIS1].

Combining this observation with the previous point ahout modales of the visual system keads to a view

of visal perception as the provess of constiacting instinces of a sequence of representations. 1o each module
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there corresponds a representation on which it operates, and a representation that it produccs. The first of
these representations, and the one whose structure is least subject to dispute, is the image itsclf. Not surpris-
ingly, most attention has centered on those modules that operate upon the image (section 3). As we shall see,
the further we progress up the processing hicrarchy, the less secure the story becomes, as the exact structure
of the representations becomes more subject to dispute. This is hardly surprising. The image aside, any
rcprcscntation is onc module’s input and another's output. Computer science teaches us that all of them shape

its cventual structure.

For example, scveral modules of the visual system provide information about the layout of visiblc sur-
faces. Sterco provides disparity, from which local shape and relative depth can be computed. Motion, texture,
and shading all provide evidence for shape. Barrow and Tenenbaum have suggcested that a number of different
viewer centered representations make explicit important information associated with surfaces [BARR78]. They
call such representations intrinsic images and propose specific intrinsic images for depth, motion, surface
topography, and color. The name intrinsic images stems from Barrow and Tencbaum’s idea that the repre-
sentations are addressed using the same coordinates as the image. For cxample the color at an image point
whose coordinates are p might be found in representation C' as C(p). Others, notably Marr and Horn have
suggested a single representation that makes explicit local surface oricntation and discontinuitics of depth

[MARR78a, HORNS82}. The precise details arc uncertain at the time of writing.
o The mathematics of image understanding are becoming more sophisticated,

Mathematical analyses have been offered for some of the clements of visual perception, such as the
rclationship between image irradiance and scene radiance, the location of important intensity changes, and
motion primitives. In cach case, it is observed that the information in the image only partially constrains
the interpretation of the image, and further constraints arc sought. ‘The additional constraints cmbody commit-
ments about the way the world is, at least most of the time, For example, the world mostly consists of smooth
surfices, and scencs are mostly viewed Irom a position free of accidental aligniments. Perceptual abilitics such

as stercopsis, lightness determination, and shape from shading and from texture, require that the appropriate




constraints be uncovered and appropriately expressed.

Most of the analyses to be discussed below begin with a precise description of the representations
operated on and produced by the visual process under scrutiny. Increasingly, “precise” means "mathematically
precisc”, as the technical content of image understanding has become steadily more sophisticated, Many
observations about the world, as well as our assumptions about it, arc naturally articulated in terms of the
"smoothness” of some appropriate quantity. ‘This intuitive idea is made mathematically precise in a number of
ways in rcal analysis, for cxample in conditions for differentiability. Relationships between smopthly varying
quantities give rise to differential equations, such as Horn's image Irradiance Equation. We shall discover the
valuc of making the image forming process cxplicit. This in turn leads to a concern with gcometry, such as
the propertics of the gradient, stercographic, and dual spaces. Combining geometry and smoothness leads
naturally to multi-variate vector analysis, and to differential geometry. For the most part, a representation
docs not of itsclf contain sufficient information to guarantee that a module can uniqucly arrive at the result
computed so cffortlessly by the human visual system. Additional assumptions, in the form of constraints, are
required. This observation has led to application of constraint satisfaction and cquation solving techniques
from numerical analysis as well as various instantiations of |.agrange multipliers (especially in the fonn of &c

calculus of variations).
o Locally parallel architectures have been developed.

‘The majority of the work to be described here had its initial expression in the form of complex computer
programs. A common complaint about artificial intelligence in general, and image understanding in particular,
uscd to be that it not only did not run in real time, but inhcrently could not. To the extent that this referred to
so-cilled "heterinchical™ programs of the 1970°s vintage, this was justified. However, artificial intelligence has
been well advised not to make (il time perforance its most impuortant metric of success, since such a metric

oflen implicitly assumes a particular, usually sequential, model of computation.

Many recent vision algorithms take the form of parallel computations involving local interactions. Once

the ideas wie fully fixed in software, they are naturatly realized in hardware. Davis and Rosenfeld 1eview one
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popular class of program structures, called "rclaxation” [IDAVI81]. In the case of edge ﬁnding. one algorithm
has been implemented in TT1. logic [NISH81], and scveral others in CCDINUDD79]. The current rapid pace
of devclopments in VLSI has further motivated research into local parallel programming architectures. It is
likely that our concept of computation will change as a result of such developments. Vision will be one of the
first areas to benefit from such advances. It seems that it will also be a continuing source of inspiration to VLSI
designers [BATAS81, NUDD79). As more sophisticated ideas are embodicd in hardware, ne.w applications of

itnage understanding will become feasible,
® There are growing links between image understanding and theories of human vision.

For many authors, the changing style of rescarch in image understanding has not been simply a matter
of a narrowing of attention and a more highly developed technical content. Instead, greater significance is
attached to forging explicit links between U and psychophysics and neurophysiology. From this perspective,
image understanding aims at the construction of computational theories of human visual perception. In
large part, this approach stems from a serics of papers written by David Marr and his collcagucs at MIT.
Marr’s work derives from a background in ncurophysiology, and is cxpressly addressed to psychophysicists
and ncurophysiologists, among whom it has cxcited considerable interest. In particular, it is couched in
terms they are accustomed to, and makes extensive reference to their literature, rather than that of computer
vision. A book describing Marr’s thoughts about human visual perception and incorporating summaries of
the contributions he and his collcagucs have made across the entire range of the subject is currently in press

[MARRS2].

It might be imagined that there would be considerable differences of emphasis, subject matter, and tech-
nical content between the work of those researchers who see themsclves constructing a computational theory
of human visual perception and those for whom human visual perception is at most a matter of secondary con-
corn. ‘This turns out not to be the case. For example, the ACRONYM system's representation of objects based
upon generalized cones bears many “milarities to * it proposed by Marr and Nishihara, who relate their work

to human pereeption| BROO79, MARP™ ). Again, Hotn and Schunck’s work on the detenmination of optical
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flow has intriguing similaritics to the directional selectivity work of Marr and Uliman that was inspired by

ncurophysiology [HORN81c, MARRS1].

Figure 1 shows some of the representations and modules to be discussed in the remainder of the paper.
The figure is intended to make the organization of the paper casicr to understand, but it should be treated with
caution. The organization implicit in the figure is similar to that given in Barrow and Tenenbaum [BARRS1b]
and Marr [MARRT78]. The representation referred to here as the “surface oricntation map” is intended to
cover what Marr calls the 241D sketch” [MARR78a), Horn calls the "necdle map” [HORNS2], and Barrow

and Tenenbaum call "intrinsic images” [BARR78).

‘The paper, and hence the figure, is limited in scope. As mentioned above, there is little discussion of
applications. There is little if anything about color, and only cursory discussions of motion. The extraction of
uscful information from color is still extremely rudimentary. Motion has reccived some attention recently, but
findings are preliminary. For example, it is far too early to know what information can be computed reliably
from the changing patterns of brightness called the optical flow (see section 3.2). A pervasive view of motion
perc., .on is that it arises from temporal changes to the representations that are important for static vision.
‘I'he Marr-Hildreth theory of edge detection inspired Marr and Ullman’s work on directional selectivity, the
primal sketch led to Ullman's work on long range motion, and Horn's work on shape from shading underlies

the work of Horn and Schunck on the determination of optical flow.

Judged as a flow diagram, figure 1 suggests that the flow of information, and the construction of repre-
sentations, is entirely sequential, proceeding from the lowest level operations on the image to more semantic
higher level operations. Many authors have argued that perceptual processing cannot be so rigidly scquential.
‘They suggest that perception is opportunistic, taking advantage of whatever information becomes available in
an image. Natural scenes are normally highly redundant. Gibson [GIBSS0] notes approximately 23 distinct
cues for determining depth and surface layout, many of which arc available in most images. However if only
an unpredictable small selection of cues are available, vision is not usually impaired. Only when a single cue is

present, as i the laboratory settings of experimental psychology, is our perceptual system easy (o fool. Minsky
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Figure 1. Some of the representations and modules discussed in the paper.

and Papert {MINST72] suggested that the fiexible processing of information by the pereeptual system might

best he modelled by process interactions. ‘This produced a rash of programs in which relatively high level
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knowledge could actively intervenc to modify the course of low level processing. Examples include [SHIR73,
BAJC?S, BAJC76B, TENET77, BRAD78, HANS77, BROO79, SELFB]). Similar “hcterarchical” programs
were experimented with in speech perception [LESS77). The performance of such programs did not give cause
for unbridled celebration, Some of the associated difficultics are reviewed in [BRAD79).

A rather different kind of fexibility is made available by local parallelism. [WALT72] showed how a
variety of cucs could be combined to yield an overall interpretation. [DAVI81] stress that an attribute of such
process structures is their insensitivity to the sequence in which operations are performed. However, local
paralicl processes have their own problems. It is casy cnough to start local parallcl processes going. It is less
casy to guarantcc that they will stop (but sce [HUMMS0)), or to be able to make solid assertions about the final
state of computation when they do stop. It may be that process structuring will become a key component of
image understanding, but currently it is simply too carly to be sure. For thc moment it secems best to remain
agnostic and concentrate on the solid achievements of the past decade, most of which are largely independent
of process structuring.

Organization of the paper

In the next scction we present a brief review of work in gecometrically simple "microworlds”. Some
of the gencerally important idcas developed initially for the blocks world of line drawings of polyhedra are
introduced. Kanade's extension to the world of origami, and Barrow and Tencnbaum'’s work on curved "play
dough” figures is mentioned.

Scction 3, by far the longest in the paper, discusses modules that operate directly upon the image.
Subscction 3.1 concerns cdge finding, 3.2 the dclcrminalion of shape from shading, 3.3 texture, and 34
scgmientation.

Scction 4 discusses modules that operate on the output of section 3, which, following [MARR76a). we
call the primal shetch, Subscction 4.1 discusses sterco, 4.2 shape from contour, 4.3 shape from texture and
Kender's gencralization to "shape from you name it”. Finally, subsection 4.4 briclly discusses shape from

mohon.
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Scctions 5 and 6 discuss modules that operate on surface orientations and viewpoint independent repre-

sentations.

2. Review of work on geometrically simple microworlds

Beginning with the scminal work of [ROBE62], much early attention of 1U was devoted to interpreting
line drawings of polyhcdra automatically. This work marked a significant break from pattern recognition in
that it emphasized descriptions of the objects present in a scene and the spatial relationships between them.
For cxample, figure 2 might be described as a cube smndin'g in front of a block. Clowes and Huffman stressed
that the rclationship between a scene and its ilage needs to be made explicit [CLOWT71, HUFFT1). A line is
the image of the cdge of a polyhedron in the scene. They noted that lines can be labelied as convex, concave,
or occluding(figure 3a). The interpretation of a line can not change along its length. A junction is the image
of a three-dimensional vertex. Enumeration of the local volumes occupicd by vertices, and the appearance
of such vertices from all possible viewpoints gives risc to a sct of labellings for junctions (figure 3b). Vertex
labellings embody a local constraint: although there are three lincs forming an arrow junction, and cach line
has four possible interpretations (counting the two senses of occlusion scparatcly), there are not 4 = 64
physically realizable labellings for an arrow vertex but only 3. Notice that every interpretation of a T-junction
is assumed to signal an occlusion of the stem. Converscly, cvery scene occlusion gives rise to a T-junction. The
constraints local to cach junction propagate along the lines that connect them to adjacent junctions, possibly
rendering some of the initial sct of labellings at buth junctions impossible. Clowes deterinined consistent
interpretations by a scarch space technique. Surprisingly, many simplc linc drawings have many consistent

interpretations, though occlusion often resolves ambiguity.

Despite the geometric restrictions imposed by Huffiman and Clowes, their scheme had limited com-
petence. First, as Kanade pointed out, the HufTfman-Clowes scheme was csseitially qualitative in that it could
not distinguiish between the truncated pyramid shown in figure 4a and the cube shown in fipnre 4b [KANASI),

Human pereeption is at least partly quantitative since we readily assipn slopes to line drawn surfaces and

B :
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Figure 2. A typical line drawing of polyhedra studied by Huffman and Clowes.

estimate rectangularity of vertices from junctions. Since the line drawing in figure 4b can be the image of an
infinite set of scenes, it is more precise to say that the Huffman-Clowes scheme could not determine that figure
4 has no interpretation for which vertex A is rectangular while figure 4b does. It is also interesting to ask why

the cube is perceived as a cube. One proposal, duc to Kanade, is sketched below.

A sccond manifestation of the qualitative nature of the Huffman-Clowes scheme is its inability to detect
the impossibility of the tine drawing shown in figure 5. Huffman's paper was principally concerned with
“impossible objects” (such as that depicted in figure §), and the consequent need for a more expressive repre-
sentation, He proposed a representation called dual space and an orthographic projection of it calicd the dual
picture graph, Mackworth [MACK 73} developed the idea of a representation of suvfice shape further by intro-
ducing gradient space, an idea that was developed in (DRAPSO, DRAPST, HORN77, KANASBO, KANASI,
I NDRD. HUKETT, SUIGITS, SUGIST

[



-
7

15

Figure 3. a. The possible interpretations of an image line. b. The possiblc intcrpretations of a
trihedral vertex.

Consider the imaging gcometry depicted in figure 6: a surface f(z,y) — 2 = 0 is viewed from a great

distance along the negative z-axis. Applying the chain rule,
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Figure 4 The Huffiman-Clowes scheme could not distinguish these line drawings.

gd: +gy£dy—dz =0,

that is

(g,g, —1).(dz,dy,dz) =0,

sothat (3, 0, — 1) are the direction ratios of the surface normal or gradient. It is customary to denote U vy
p aud ,'{’ by q. The courdinate frame bascd on (p, g) is called gradient space. As an cxample consider a planar
facct az - by + ¢ — 2 = 0. ‘The gradicnt has p = a,q = b. 'The origin of gradicnt spixe corresponds to
surfie facets that point dircetly at the viewer. Moving away from the origin, it is casy to show that (p? + ¢9)}

i the skant of the surface normal. The angle 7 whose Lingent is g/ p is Uw 1l of the s ¢ nonmalfiguic /).

o/
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Figure 5. The Huffman-Clowes scheme could not determine that this line drawing depicts an
“impossible object”. ,

The coordinates can be aligned so that a vector (z,y,2) = p projects to (z,y) = k X (v X k), where
k is the unit vector in the z dircction. In particular, the gradient vector (p, g, —1) projects t (p, g). Suppose
two planes P, and P2 have surface normals (p;, ¢;, —1}, and suppose that they meet in a space vector . It is
casy to show (hat the image ! of y is perpendicular to the dual linc connecting gy = (py, 1) o g2 = (P2, @2)
[MACK?73]. Furthenmore, v is convex if and only if the order of the g; across ¢ is the same as the order of the
images of P; across{ (figure B). Mackwonh.cxploitcd this obscn'rati(m in a program that was capable of deter
mining the impossibility of the notched tetrahedron shown in figure 5. However, Mackworth's triangulation
solution scheme could not determine the impossibility of the notched cube also shown in figie S [MACKT3).
Draper [PDRAPR1] has analyzed the competence of Mackworth's gradient space scheme and an extension due

to Huffman based on "dual space” [HUFF77).

‘The notched cube of figure § illustrates an assumption discussed by Kanade [KANABIT, wamely lines tha
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Figure 6. Viewing geometry for defining gradient space.

are parallel in the image are the images of vectors that arc parallel in space. If lincs {; and I are the images of
scene vectors v, and v,, then it is casy to show that I is parallcl to & if and only if the triple scalar product
[vy, vy, k] is zero. 1t follows that Kanade's parallel linc assumption fails only when py, vy, and k arc coplanar.

Generally, people find it difficult to interpret such forcshortened figures properly [MARR78b, MARR784].

Kanade [K ANA81] has also studicd an intcresting assumption involving what he calls “'skew-symmetry™.
Consider figures 9a, 9b and 9¢. All three are interpreted as symmectric, planar figures viewed obliqucly. As
figure 9d shows, a skew symmetry defines two directions: the image of the axis of syminctry, called the skewed
symmetry axis, and the image of the normal to the axis of symmetry that lies in the planc of the figure, called
the skewed transverse axis. Skew symnetrics feature prominently on the cube and truncated pyramid shown
in figuic 4. Kanade proposes that a skewed symmnetry is always interpreted as the image of a real synunctry

vicwed obhquely. This assumption gives rise o a constraint, expressed in terms of the angles a and 8 defined

-




Figure 7. Slant and tilt in gradient space.

in figure 9d, rclating the possible gradients of the surface containing the real symmetry. In fact, thespussible
gradients form the hyperbola shown in figure 10, Notice that the possible plancs with lcast slant (the tips
of the hyperbola) have a normal that projects into the biscctor of the skewed symmetry axis and the skewed

transverse axis. This accords with a heuristic finding of Stevens [STEVS0).

It is important to rcalize that the parallclism and skew-symmetry assumptions apply beyond the blocks
world. Kanade has shown how they can be combined with Huffman-Clowes style labelling and Mackworth-
style algebraic analysis to give both a quantitative and a qualitative interpretation of line drawings in the -

microworlds of blocks and origami constructions [K ANAS1].

‘The junction Libelling constraints of Huffman and Clowes are essentially local. 'The constraints of surface
planarity, skew symmetry, and parallelism arc less local and support more competent programs. 1 lowever,

none of the constraints are global in e sense thar they apply simultancously to all parts of the image, Waltz




Figure 8 Convexity preserves order across the gradient line.

investigated the global constraint afforded by the shadows cast by a single distant light source [WALT72).
‘The number of interpretations of a line rose from 4 to 12, with a consequent massive number of possible
junction labellings. As Draper has pointed out the large (and probably unverified) labelling sets would be
considerably larger without the assumption of general pusition of the viewer [DRAP80]. Waltz's linc labels
incorporate information about the surface gcometry, illumination, and surface-object boundaries. The huge
label sets precluded a tree search of the sort uscd by Clowes '[CI.0W7ll. Instead, Waltz designed a filter
program, potentially capable of running as a local parallel program, that usually converged to a single labelling
in near lincar time. The Walt filter accelerated investigation of local parallelism. 1.ine labelling is discussed
by [ZUCK77, ZUCK81, HUMMBS0]. Waltz's program reaflirmed the value of redundancy when processing
can mukce appropriate use of it. However, the complex linc labellings confounded too much information from

different levels of the visual system in an impoverished representation.
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Figure 9. Skewed symmetry. a-c: examples of skew symmetry. d. definition of skewed-symmetry
axis and skewed transverse axis. (Reproduced from [KANASI), figure 16)

The figures discussed in this section have all been images of objects with planar surfaces. Some authors |
have tricd to relax this restriction. One difficulty with drawings of curved surfaces is that one of the basic l
assumptions of the Huffman-Clowes work no longer holds: a line can change its interpretation from onc end
to the other {HUFET1] Turner [FURNT4] noted that such changes of interpretation are not arbitary, and

he allowed a small number of transtormations of a line label to arrive at an interpretation. Recently, Binlord
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Figure 10. A skewed symmetry defined by the angles a and § can be the projection of a real
symmetry on a plane whose gradient is (p,q) if and only if the gradient lics on the hyperbola
shown.(Reproduced from [KANASI1], figure 17)

{BIN81] and § owe and Binford 1. OWES1] have suggested more general interpretations of curved lines that
may cnablic labelling techniques to be extended to line drawings of arbitrarily curved surfaces (sce also section

3.1.3).

Barrow and "Fenenhaum [BARR78] have also studivd a microw orld of curved objects, ‘They combine line
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labelling techniques with Horn's work on shape from shading (see section 3.2) to interpret idealized images of

"play dough” scenes.

Work in geometrically simple microworlds has played an important role in the development of image
understanding. From the pioncering work of Roberts, Clowes, and Huffman to the present day. the goal has
been to generate descriptions rather than transformed or classified images. The key has been to make the
relationships between the scene and the image cxplicit. Examples include the interpretations of image lines as
visible edges, and the analyses of skew symmetry and parallelism. Mackworth’s development of gradicnt space
points up the need for rich represcntations. Finally, Waltz’s work shows that redundancy can be cxploited by

appropriate computing mechanisms.

Microworlds also sct traps. It is irresistably tempting to deploy domain specific information at the carliest
opportunity. Planar objects have a number of global propertics that arc not cnjoyed by curved objects. For
example, two plancs intersect along a single straight edge in space, so that from any given viewpoint, one
planc is always in front of the other on one side of the image of the cdge, and always behind it on the other
{DRAPSL]. The labelling schemes of Huffman, Clowes, and Waltz, extended to idealised images of curved
objccts with reflectance patches and shadows, produce a vast number of labels that confound many distinct
sources of information in a single label. It seems more fruitful to attempt to tease out the information provided

by cach of these sources scparately.

3. Modulcs that operate on the image

3.1 Fdge detection

A great deal of cffort has been devoted to understanding how the significant intensity changes in an
image can be extracted, and how the resultant information can best be represented. Marr coined the tenn
primal sketch w describe such a representation [MARRT76a). Significant intensity changes correspond o a

varicty of events in a scene, such as depth, reflectance, and shadow boundaries, as well as discontinuities in
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surface orientation. The image intensities I(x,y) form a surface that is a discrcte approximation to one that is
continuous ncarly everywhere [ROSE76, PRAT79). Quantization and sensor noise of various sorts complicate
the formulation of a predicate that can completely reliably determine which intensity changes correspond to

perceptible scene events (that is, which are "significant™).

1t has been observed repeatedly over the past twenty years that intensity changes correspond to maxima
of the gradient of the image surface, equivalently a place at which the second derivative crosses zero and
changes sign. Many local operators have been developed to approximate first and sccond directional deriva-
tives by first and second differences. A representative sample is shown in figure 11. Mostly, such operators

were developed and tuned for a limited domain of application.

Figurc 12 shows an idcalized step change in intensity and the response of first and second difference
operators. In practice, gradient operators tend to produce a large response over a broad region flanking an
cdge (sce figure 14, also [BINF81]), cspecially with intensity changes other than steps. As a result, feature
points from a gradicnt operator have to be thinned, a process that makes it difficult to localize the position
of the cdge as accurately as with second difference operators. On the other hand, errors grow rapidly as

differences are taken, so that sccond differences are much noisicr than first differences.

A rccent edge finder, which appears to work well on a range of natural images, is duc to Nevatia and

Babu [NEVAT8). It applics the six gradicnt opcrators shown in figure 13 to each point of an image and
chooses the onc giving the best response if (1) it is high cnough and (2) it is not dominated by the responses
at neighboring points in a direction which is normal to the same apparent cdge. This process is followed by
thinning, thresholding, and lne fitting. Sotne indication of the performance of the Nevatia-Babu algorithm

can be seen in figure 14,

Binford has argued that it is important w distinguish between the detection of an intensity change and
its subsequent localization [BINEF81). He suggests that « maximum of a noisy signal is good for detecting
change but not for isolation. Conversely, a zero crossing is ideal for localizing change but not for detection,

MacVicar-Whelan and Binford find adjacent pixels between which a second dificrencing-like operator changes
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Figure 11. A selection of masks from the image understanding litersture used to compute
approximations 10 the first derivative of an itage in the x direction.

sign [MACV81]. Using lincar interpolation they claim to be able to localize intensity changes with sub-pixel

accuracy. Sub-pixel accuracy is ilso chiimed by [MARR79} in the context of vernier acuity, where the cye is
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Figure 12. The tesponse of an edge and bar operator to an ideal step change in intensity. a. The
intensily change. b. The response of a typical first difference edge operator such as that shown
in figure 11a. c. The response of a typical bar operator such as that shown in figure 1le.

able to perccive breaks in lines that are more closely spaced than the physiology of the eye would scem to
permit [MARR79].

Real images are further complicated by defocussing and the frequent occurence of slow intensity
gradients across large portions of the image. Humans are largely unaWarc of slow lincar intcnsity gradients
[LLAND71, MCCA74]. ‘This sccms to be because of “lateral inhibition”, where the image is processed by
“center surround” operators (figurce 15) that resemble rotationally symmetric second differential operators.

Herskovits and Binford [H1:RS70] proposed an carly taxonomy for the intensity changes they found in
images of polyhedra, classifying them as "step”, "roof”, or “edec” changes (figurc 16). As we shall claborate
below, they proposed different operators Fyyep, Frons. and Flage to detect cich different type of intensity
change. It is commonly supposed. especially in applications where scenes are effectively flat, that the majority

ol intensity changes are of the simple step type. Many dclccliuq schemes are predicated upon this e sumption,
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(7‘ Figure 13 The masks used by [Neval8} 1o compute fint dertvatives of un image o 30 degree
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Figure 1S. A center surround operator.

Herskovits and Binford [HIERS70] and Horn [HORN77] obscrve that step edges typically correspond to depth
or reflectance boundarics, whereas the equally important class of intensity changes corresponding to surface
oricntation discontinuitics often give risc to roof and edge transitions. Marr refined the Herskovits and Binford
classification to include "extended edge”, and "thin and wide bar" (figurc 17) and proposed a varicty of

operators of differcnt sizes to discriminate between them [MARR76a).

The construction of a primal sketch represeatation from an image has three distinguishable stages: (1)
"featurc points” arc detccted at which the ‘intensity change is deemed to be significant; (2) feature points
are grouped (o form line segments, or small closed contours; (3) these line scgments arc interpreted as scene
events, say as bounding contourss or as true edges of visible surfaces. These three stages are discussed in turn in

the following subscctions.

‘The operators shown in ligure 11 are directionally selective. Some authors have proposed the use of roti -




Figure 16. The taxonomy of intensily profiles proposed by Herskovits and Binford. a. idealization
b. cxamples,

tionally symmetric operators, such as the Laplacian A, for edge detection [BRADS1b]. Several reasons have
been advanced. Some authors prefer theoretical arguments, noting the (near) isotropy of human vision and
the fact that the center surround operators giving lateral inhibition are rotationally symmetric. Others have
stressed practical considerations. For example, in her discussion of the Marr-Hildreth theory of edge detection
(to be discussed in section 3.1.1), Hildreth [1111.180,page 13] notes that "a number of practical considerations,
which will be illuminated in the discussion of the implementation, suggested that the ... operators not be
directional”, Supposc instead that dircctional operators are used. Most algorithms for finding feature points
have two stages: first, the image is convolved with directional operators in "sufficiently many” directions. and
second, the ontputs are combined to determine the orientation and cxtent of intensity changes. Regarding
the first stage, both Marr and Hildreth [MARRS0a, page 193] and Hildreth [H11.180, page 40) comment

on the cost of convolving with a “sullicient™ number of aperators. ‘They show that a single rotationally sym-
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Figure 17. Marr's classification of the intensity changes that occur in natural images. Afler figure
2 of [MARR76a]

metric operator (the 1.aplacian) gives precisely the same results if a condition called “linear variation” holds.
Regarding the second stage, Hildreth [H11.1D80, page 36) observes that edges in a direction close to that of
the mask are clongated ("smeared™) in the direction of the mask. She also notes that operators at several
orientations give significant rcsponses to any given edge, and that combining the responses is non-trivial,

Other authors are less convinced of the need for rotationally symmetric operators for cdge finding [BINI-81].

The issuc of controt ariscs in edge finding as it docs in all other arcas of image understanding. Tt has
been argued that it is not possible to find significant intensity changes, group them, or interpret them without
engaging quite high level knowledge. Bajesy and Tavakoli [BAJC7S, BAJC7613) were carly proponents of this
view, as was Shirai [SHIR73]. Davis and Rusenfeld survey the application of relaxation processing to isolate

feature points [DAVISI,
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3.1.1. Finding feature points.

Although many of the published schemes for detecting and isolating feature points were discovered
empirically, there have been three main approaches to making edge finding more precise. The first consists
of locally modelling the image by a parameterized analytic surface and detcrmining the best fitting choice
of parameters given the actual intensity distribution. The second is Binford's application of signal theory to
cdge finding. Finally, Marr [MARR76a] and Marr and Hildreth [MARR80] have devcloped a theory of edge
finding in the human visual system that takes account of ncurophysiology and psychophysics. We discuss each
of these approaches in turn.

Surface fitting

The derivation of op&ators to approximate first and second differences by Icast squares surface fitting
was introduced by Prewitt [PREW70}, and Hueckel [HUECT71}. [BROO78, HUMM79, HARA80] give good
introductions to the method. In the simplest case, where noise considerations-are ighored, two things must be
chosen: (1) the size of the local ncighborhood or window in which the surface will be fit, and (2) the function
to approximate the image surface in the window. For simplicity, we choose a window of size 2 by 2 and
approximate the image surface in such a window by a plane P(z, y) = az + by 4 c. Haralick [HARAS80] calls
this the "sloped facet™ model. Assuming that the response of an edge operator is independent of the choice of
coordinate origin, we assume that the window coversz = 0, 1; y = 0, I (figure 18). We detcrminc the best
fitting choice of paramcters a, b and ¢ by least squarcs minimization of the difference between the intensity
values actually found in the window and those predicted by the function P(z, y). The square of this difference

is given by

d=(a+b+c—I(1, )P +(a+c— K10+ (b+c—1(0,1)) + (c — 1(0,0))).

I-or a least squarcs fit, we first set

.yt
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This implies

2a+ b+ 2 = I(1,1) + I(1,0).

Similarly, setting ¢ and 4 cqual to zero, we get

o+ 2b+ 2 = I(1, 1) + I(0, 1),

and

2a + 2b + 4c = I(0,0) -+ I(1,0) + I(0, 1) + I(1, 1).

Solving, we sec that

2a = I(1, 1) + I(1, 0) — (0, 1) — I(0, 0),

and

2b = I(1, 1) + I(0, 1) — I(1,0) — I(0,0).

The gradient of P(z, y) in the z-direction is p ¥ = a. Similarly, 0—"%12 = b. We can dcpict the
gradicnt operators a and b as in figure 18.

Haralick has cxtended the basic scheme iflustrated above to model the cffect of sensor noisc [HARAS0).
le adds a normally distributed noise term n{z, y) to the function P(z, y) and shows that an F-test is ap-

prapriate for deciding whether or not there is a significant change in the slope of adjacent sloped facets. Here

"significant” is given its usual 195 statistical meaning,

Py




Figure 18. a. ‘The 2 by 2 window covering pixels (0.0) 1o (1,1). b and c. The gradient operators
that result from best filting a plane ("sloped facet”) in the window shown in a.

Brooks [BROO78] considers fitting plancs and quadratics to 3 by 3 windows. The best fit planc gives the
Prewitt operator shown in figure 11, and the second derivative of the best fit quadratic gives the bar mask
shown in figure 11. Brooks obscrves that the dot product of the gradicnt operators a and b in figure 18 is
zero. This suggests that it may be possible to develop an orthogonal set of increasingly higher order masks,
One natural choice for such an orthogonal sct is the sct of IFouricr basis functions. Other choices arc Walsh or
I ladamard functions. The best fitting choice of Fouricr basis functions was developed by Hueckel in an carly
application of the function fitting idca [1 HTUKECT). O'Gonnzn; proposed the use of best fitting Walsh functions

[OGORT6).
Binford’s signal theory approach

Recently, Binford [BINI81] has outlined an approach o edge finding that has its roots in two carly un-

published papers [HERS70, HORN73). ‘The details are not completely clear and would be a valuable additvon
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to the literature. It was noted above that image noise makes it difficult to determine reliably which intensity
changes are significant. Herskovits and Binford showed how to estimate the signai to noise ratio for an image,
and determined that the error is typically about 19% for a zero signal. They studied intensity profiles in scenes
of polyhedra and proposed the classification shown in figure 16. The response of a bar mask to an idcal step
cdge is shown in figurc 19 (see also [MARR76a). Clearly, as the number of points in the bar mask increases,
the operator can detect steps of lesser heights more reliably. Herskovits and Binford make this idca more
precise by defining the sensitivity of an operator as the signal for which detection is 50% successful,

The intensity values determined by sensors arc most reliable in the middle range. Accordingly, Herskovits
and Binford [HERS70, page 36] suggest upper and lower thresholds u and { on intensity. The idcal step gives
rise to a band of u’s flanked by a band of I's. Define L to be the number of points at which the value is u in
the left band minus the number of points at which the thresholded intensity is I. Similarly, R is the number
of points in the right band at which the thresholded value is u minus the number at which the value is l. If

Futep = L — Ris big enough, a local maximum is found. In this way the step is detected though not localized.

Figure 19 also shows the response of a bar mask to an ideal roof intensity change. Note that unlike step
changes, the response reaches a maximum in the vicinity of the top of the roof. Accordingly an operator Frop
is defined as the difference R + L, that is the difference between the number of values u's and I's summed
over both bands.

A refinement of the scheme is described in [BINF81). The operator F, .y, approximates the derivative
of the second derivative, or equivalently, detects the step 'imcn.sity change by looking at the third derivative
of intensity. ‘The intensity change is then Jocalized from the zero crossing of the second derivative. A roof
change is detected from the maximum of the sccond derivative and localized from the zero crossing of the
third derivative.

'T'he operators Futep, Frony, and a similar one for “cdge effects™ were incorporated in the Binford-Horn

line finder [HORN73] and discussed retrospectively in [BINF81).

Murr's approach 1o cdge detection by the human visual system

¢
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Figure 19. Responsce of a bar mask to an ideal step (a) and roof edge (b). 1. The intensity
change. 2. Response o a lateral inhibition operator. 3. Desivalive of 2,

A novel feature of Marr's development of the primal sketch [MARR76a] was its direct reference to

nenraphysiology and psychophysics. a commitment Mot continued to stress in fater work. Mare's algorithm
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for computing the primal skctch from an image had a number of interesting features. First, being inspircd
by neurophysiology, Marr applicd the findings of Hubel, Wiesel, Barlow, and others, which scen to suggest
that an carly stage in the processing of visual information consists of convolving the image with edge and
bar masks. As we observed above, such masks signal an approximation to the first and second (dircctional)
derivatives of the intensity function. Marr based his algorithm on an analysis of the response of bar and edge
masks to ideal instances of the scene events that give risc to intensity changes. The algorithm itself consisted
o convolving an image with a number of edge and bar masks and then “parsing” the results by comparing the
actual responses to those predic:ted for ideal scenc events. It was noted that bar masks seemed to give more
reliable information than edge masks, an observation whose cxplanation awaited the later development of
AG operators which have a similar cross section (sec below). The algorithm convolved the image with masks
of different panel widths. Although the later justification for this would be in terms of scparate processing
channels, the original cxplanation was based on the need for noise reduction, although this idca was never
formutated precisely. In any case, the outputs of the individual channels were combined, not only to reduce
the cffects of noise, but to compute measures such as the "fuzziness” of an edge. The idea of combining
the outputs of independent channels remains an important goal of the work on zcro crossings, but, with the

singular exception of sterco (scc below), it has not yet been worked out.

Marr and Hildreth [MARRS0, page 189] point out that “a major difficulty with natural images :» that
changes can and do occur over a wide range of scales, so it follows that one should seck a way of dealing with
the changes occuring at different scales.” One way to do this, which has been proposed several times in the
image processing literature, is to pass the image through a number of band limited filters. The difficult issues
raised by the idea concern the choice of filters (bar mask, Fourier, Gaussian), the number of them, and the

3

cxact band pass characteristics of each.

Intensity changes arc localized in space, a fact which derives from their physical causes {HHORN77,
MARR76, MARRS04). Marr and Hildreth arguc that they are also localized in the frequency domain, Mare

and Hildreth IMARRSO, page 191) nate that “unfortunately, these two localization requirements, the one in
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the spatial and the other in the frequency domain, are conflicting”. The Fouricr transform of a bar mask has
components of arbitrarily high frequency. Similarly, the inverse transform of a bar-like band pass filter in
the Fouricr domain has significant "echoes”; [HIL.D80] gives cxamples. They point out that a Gaussian filter
optimizes localization in both domains simultaneously, and so it is chosen as the band limiting ﬁlter in their
theory. '

For the practical considerations given in the introduction to ;his section, Marr and Hildreth propose the
use of a rotationally symmetric operator to find feature points. An obvious candidate is the Laplacian A (sec
[BRADSI1] for a discussion of rotationally symmetric operators). The Marr and Hildreth appr.oach to edge
finding follows Gaussian smoothing by convolving the image with a Laplacian, thus isolating the positions of

zero crossings. In fact, by the convolution theorem [BRACGS, page 118],

A(G*image) = (AG)*image,

where G is a Gaussian operator, and * denotes convolution. Marr and Hildreth [MARRS0, page 193] point
out that the AG operator closely resembles the difference of Gaussian (DOG) operators proposed by Wilson
and Gicese [W11.577] (sce also [Wil.S79)). Indeed they show that AG is the limit of a DOG, and that the DOG
closely approximates it. The two-dimensional cross section of the AG operator is shown in figure 20a. It can
be thought of as a smoothed version of a bar mask cross section, and may explain Marr’s heuristic preference
for bar masks over edge masks mentioned carlier. Wilson and Bcrgcﬁ's work suggcsts that there should be
four bandpass channcis at cach retinal cccentricity, and that their characteristic sizes should scale lincarly with
cecentricity, being smablest in the fovea and doubling in size by about £,

Shanmugam, Dickey. and Green investigated the characteristics of the optimal frequency domain filter
for edge detection [SHANT9). By "optimal” they mean the filter that produces the maximum cnergy in the
vicinity of the location of i {step) edge. Jernigan and Wardell [JERN#E1] have shown that there is no significant
ditference between the optintizing filter detived by Shanmugain, Dickey, and Green, and the difference of

Craussian hilter proposed by Wikon and Berpen. ‘The characteristics of the Shanmugan, Dickey and Green
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filter are largely determined by a constant ¢ that is the product of the frequency domain bandwidth of the
optima) filter and its spatial interval. As ¢ increascs, the signal to noise ratio increases. However, for fixed
bandwidth, the improved signal to noise ratio is achieved at the expense of resolution.

Recently, Marr, Hildreth, and Poggio have noted evidence for a fifth, smaller channel in the fovea
[MARR79a}. Brady [BRADS80a] has shown how the Marr-Hildreth theory can be used to explain a number of
psychophysical results about parafoveal processing in reading. | |

Figure 21 shows images of a leaf and a coffce jar which has been sprayed with black paint to provide
a textured surface for stercoscopic fusion (see below). Figures 22 and 23 show the images in figurc 21
filtered respectively through the coarsest and finest resolution channels in the fovea. Figure 24 shows the zero
crossings of the Laplacian applicd to the filtcred imégcs shown in figures 22 and 23.

One of the novel aspects of the implementation of the theory concerns the sizes of the AG operators,
Fdge finding operators arc typically at most 7 pixels squarc; the smallest operator used in the implementation
of the Marr-Hildreth theory at MIT is 35 pixels square. Not only are the resulting operators much closer
approximations to the Gaussian (or any other filter for that matter), but the signal to noise characteristics of
the smoothed images is vastly improved. One practical consequence of this secms to be that for computing
the oricntation of visible edges one can approximate differential operators by simple differcnce operators.
Conventional edge finding operators confound filtering and differentiation, and have poor and cssentially un-
predictable filter characteristics. The first implemented version of the Marr-Hildreth theory took on the order
of three hours to compute the zero crossings in the coarse channel of an image 512 pixels squarc. A prototype
hardware implementation reduced this to 30 minutes. Nishihara and Larson report a 1L implementation
that computes and displays the zcro crossings in any channel of an image 128 pixels squarc in under 0.25
seconds [NISH81).

Directional selectivity for motion

Marr and Ullman [MARRS 1} investigate the possibility that the time rate of change of




Figere 20. () Two dimensional cross section of the AG operaior, showing its resemblance to
the center surround operators in the human fovew (b) The cross section of a typical bar mask
used by [MARR76a)

S(z,y, t) = (aG)y*1 (=, 9,40).
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Figere 21,  imoges of (2) a leal und () a wifce jwr sprayed W produce 2 textured surfoce.
(Reproduced from () [1ILDS0} anc (b) [GRIMBOP)
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Figwre 22 The ing the images shown in figure 21 twainwiate the information
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result of bandipass filtering the images shown in figure 21t simutate the information

Figare 3. The
avaitable through the finest chunndd in the human foven.
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Figwve 2. ‘The oges isaied in the images shown in figwres 22 and 23




45

can enable one to detect the direction of motion of zero-crossings. Define

; I5(z, y, t
T(z’ v, t) = ’—'(_"0"_)'0
so that
Oz, y,t
T(z,y,t) = AG*—%?"—).

Figure 25 is bascd on [MARRSL, figurc 3]. It shows the response of S(z,y,t) and T(z,y,t) in the
vicinity of an isolated intensity edge. Notice that for motion to the right, Tz, y,t) is positive at the zero
crossing, while for motion to the left it is negative. Marr and Ullman propose that motion to the right can
be detected by the simultancous activity of S*, T+, and S—. On the basis of this analysis they find close
agreement at moderate speeds between theorctical predictions and cell recordings (sce figure 15). Richter
and Ullman [RICH80] have accounted for the discrepancy at high speeds, and generally refined the mod;:l
of directional selectivity, by noting that the two Gaussians whose differcnce approximates AG act like RC
filters, composed of a resistor and a capacitor, with different time constants. This causes a slight delay in the
onsct of the negative outer part relative to the positive central part. Richter and Ullman’s predictions show
remarkable agreement with ce} recordings for a wide varicty of stimuli (sce figure 26). Coincidentally, Richter
and Ullman have proposcd a theoretical structure for the outer plexiform layer of the human retina in which
AG is computed. This suggests a particular VLSI implcmentation of AG. The gencral scheme is illustrated in

figure 27.

3.1.2 Grouping fcature points.

"The methods of the previous section produce a set of feature points (figure 28) corresponding to places in
the image at which the Intensity change is considered significant. ‘The next stage of processing imposes struc-

ture on the sca of individuated feature points by grouping them to fonn extended contours. Marr IMARRT6,
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Figure 25, Derivation of the STS operator proposed by Marre and Ullman for compinting directional
seh clivity of motion, (@) The response of @ vertical contriast houndary at time t 1o a A6 operator,
showing the position 2 of the 2cro crossing. (1) Al time ((4-d8) the edee s moved  sighdy
to the right. Sebtracting viclds an approximation 1o Touyt). Notice thit | is posttive w7, (¢)
anadogoisty, on cdpe moving 1o the left is detected by o negitive value for | ot 7. (Reproduced

fiom [MAKKSL, figure 3}
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Figure 26. Comparison of theorctical redictions for the response of an X-ganglion cell (o moving
simuli using the molels of Marr-Ulloan . ad Richter-Uttman, and actual cell recordings. (1)
Re-ponse curves takent fin the penrophysivlogy fieraure for un wdpe, a wide b and o thin
ar. (¢) Theoretical predictions by the Mun-Ulliman moded. (b) Predictions by the Richter-Ullnan

model, (Reproduced from [RICHIS0, figwie 13]
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Figure 27. Spatial formation of a midget bipolar reeeptive ficld in the Richter-Ullman model. (a)
The arrangenent of cones and horizontal cells, [ach harizontd cell covers a circle (the shaded
arca) with @ radins three times Lirger than the cone pedide (the dots). It contnis 7 cones. Thus
sevens horizontal cells contet cah cone, conmceting, a total of 19 cones 10 create the surmound
e of g mmdeet bipotar coll. (H) Phe contribution 10 the sunoind of the ist. s cond. wnd third
ring of cones. Fhe receptive fickl of a midgar bipolar cell resalting from the center contribution
ol ape come and the above sutound is shown in 3 amd a shice thiough its comter is shown in 6,
thgure aeprodduced friom [RICHKO, fignre 3]
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page 501] argues that "grouping processes are available precisely because they are needed to help interpret
the primal sketch; and furthermore that these symbolic processes, together with first order discriminations,
operating recursively on the description of the primal sketch, are sufficient to account for most of the range of

‘non-attentive’ vision of which we are capable.”

We may assume that there are few accidental alignments of object boundaries, shadows, reflectance
boundaries, and surface discontinuities (also called “true cdges”) in the scene, that is, the image is taken
from "gencral position”. Then nearby feature points mostly arisc from nearby scene points and for the same
underlying physical cause. It follows that the descriptions associated with adjacent feature points that are per-
ceptually grouped are very similar. 1f feature points have reliable and rich descriptions, perceptual grouping
can be more effective. Similar considerations apply to other cases of local matching in vision such as stereo,

motion computation, and the determination of texture,

Each of the methods for finding feature points described in the previous section has associated grouping
processes. For example the Binford-Horn line finder compares featurc points locally on the basis of the size
of the contrast step across the intensity change, the type of intensity change, and the slope of the gradient
[HORN?73, page 7). Marr [MARRT76, page 503] also groups feature points on the basis of "orientation,
contrast, type(EDGE, LINE, ctc.), and fuzziness”. He notes that "the first stage of grouping combines two
clements only if they match in almost all respects, are very close to one another, and if there are no other
candidates." Typical results of this process arc shown in figures 29 and 30. Marr proposes a number of opera-
tions that group the short line scgments produced by the first stage on the basis of collinearity, proximity, and
similarity of slopc [MARR76a). 'Ihe results of these operations are histogrammed locally and the dominant

structures madc explicit. Figure 29b shows the herring bone stripes computed from figure 29.

Many images contain extended straight contours, mostly corresponding to the straight edges that prevail
in our man-made cavironment. Duda and Hart [DUDA73} and O'Gorman and Clowes [OGOR 73] popularized
a mcthod introduced by Hough for finding straight lincs in images. Ballard [BALL79] has cxtended the

mcthod considerably, and we follow his development here. Supposce that one is interested in discovering




instances of circles in an image. Ballard proposes to find the circles from the feature points that form their
contours. Let there be a feature point at point (z, y), and suppose that the gradient of the intensity change is in
direction 8. A circle is uniquely specificd by three parameters: its center (a, b) and its radius r. To pass through

the feature point (z, ), such a circle has to satisfy the constraint

(z—-a)+(y— 8 =r>

‘The gradient slope imposes the additional constraint r = (y — b)secd. It follows that each feature
point constrains the circles passing through it with the given slope to a one parameter family. As before,
adjacent feature points normally come from the same circle. There are two simple techniques for combining
the additional constraint. First. onc might intersect the onc parameter families in the spirit of line labelling
(sce section 2). The noise inherent in the measurement of the center and radius suggests that something gkin
to a rclaxation technique be used to find optimal circles. Scveral authors have suggested such an approach
[ZUCK77, DAVIS1]. Line labelling cssentially combincs evidence by an AND operation. Alternatively an
OR opcration can be uscd, corrcsponding to a summation or histogram. To accommodate noise, the range of
possiblc values for the center and radius arc quantized for cach parameter to produce an "accumulator array"”.
Each feature point contributes one vote to the (a;, b;, ri.) buckets in its onc parameter family. Local maxima in
the accumulator array arc assumed to correspond to instances of circles.

Ballard has cxtended the Hough transform technique of combining constraints on defining parameter

values to non-analytic functions and has shown how to cstimate the cficets of noise (BALLS1].

3.1.3 Interpreting feature point scgments as scene cvents

In the discussion of the microworlds in section 2, we noted the key contribution of Clowes and Huffman
who stressed the need to make explicit the relationship between image fragments and scene cevents. The line
labelling schemes of Huflman, Clowes, Kanade, Sugihare, and Waltz, and the surface kibelling schemes of

Mackworth, Huffman, and Draper all developed this fimdamental idea. Generalizing from the blacks workd,
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Figure 28. image of a feaf and the feature

points found in i using the Marr-Hildreih theory of
edge detection. (Reproduced from [HILDS0, figure 3]

‘Turner and Barrow and ‘Tencnbaum developed labelling schemes tha made explicit the

tions of edges and surfaces in their microworlds,

possible interprota-
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Figure 29. image of a piece of herring-bone cloth and typical stripes extracted from it on the
basis of slope of gradient at feature points. (Reproduced from [MARR76a, figure 19])

Onc would like o cxtend linc interpretation to feature point segments. Flongated scgments correspond to

bouadaries that mark isiportant scene events: that is why feature points were isolated in the first place. ‘The
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Figure 30. a. An imuge «.. a piece of tweed and the fealure points found in it using the Marr-
Hildreth theory of edge detection. The figure illustrates grouping on the basis of orientation of
the gradient of feature points. b. image of bricks and feature poimis grouped on the basis of
contrast. Reproduced from [HILDS0, figure 25]

£ first attempt o extend blocks world labelling schemies to real images seems to hive been Bajesy and ‘Tavakoli's

ERt AT




model bascd interpretation of acrial photographs [BAJC76a).

Marr noted a corrclation between different types of intensity change and the scenc events that often gave
risc to them. Entrics in the primal sketch were marked with their interpretation in the scene, such as “edge”,
"shading cdge”, and "extended cdge” [MARR76, page 490]. With the development of zero crossings, and
the de-cmphasis of bar and edge masks, it is unfortunately no longer obvious how to compute the assertions
that Marr had previously advocated for inclusion in the primal sketch [HILD80, page 75). 'ﬁle whoie issue of
constructing the primal sketch from zero-crossings is far from being resolved.

Binford [BINF81] and Lowc and Binford [LOWES1] have recently made an initial pass at the problem
of interpreting feature point scgments. Compared with the blocks world labelling schemes, the labellings
that L.owe and Binford propose are very gencral. A segment is intcrpreted as a space curve, and constraints
formulated on coincidence and the situations in which a curve corresponds to a bounding contour or true

cdge.
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3.2. Determining surface shape from intensity values

Horn and his colleagues at MIT have studicd the perception of shape from grey level shading. 'The input
to the "shape from shading” process is the image and the output is some appropriate representation of surface
shape. ‘The exact form of the latter representation is not yet fixed, although [HORN82] offers some thoughts.
Since we can perceive surface shape locally, in scencs with little or no semantic content, a rcasonable first
approximation is to represent the shape of a surface by its local surface normal. ‘This requires two paraneters,

say p and ¢. The relationship between shape and the intensity 7 at a point (z, y) in an image takes the form

I(z,y) = R(p,q),

which Horn [HORN77}] calis the image irradiance equation. Mathematically, the image irradiance cquation is a
nonlinear first order partial differential equation. Horn [HORN77] notes that the function R encodes the posi-
tion of the viewer, the distribution of light sources (assumed to be fixed), and the reflectance characteristics
of the surface material. Horn and Sjoberg [HORN79} derive tﬁc relationship between the function 12 and the
bidirectional reflectivity functions used by photometrists, and they show how to calculate it in particular cascs.
Onc important special casc is |.ambertian refiectance, where the intensity varics as the vector dot product of
the local surface normal and the direction of the light source,

Onc useful parincterization of the local surface normal uses the partial derivatives p = 3§ andgq = %.
where the viewed surfacc is 2 = f(z, y). This gives rise to the representation introduced in Scction 2 called
gradient space. 'Two comments are in order. First, since slant and tilt (as defined by figure 7) have natural
peiceptual meanings, onc might argue that'the polar form of gradicnt space is preferred by the human visual
system. Stevens [S11V80] develops this argument, and some further support for Lthe position is provided by
(WITKS1).

Sccond, there is a basic problem with gradient space, namiely its inability 1o represent occluding bound-
aries at which the swface turns away from the viewer, At occluding boundaries the slant angle is §. so

that its tangent (8 in figure 7) is infinite (note that this objection does not apply to using the angles o and




7 as [STEVS0] notes. Ikeuchi and Horn [IKEU81) introduce a different parameterization (f, g) of surface

orientation that they call stereographic space. Formally, f and g arc related to p and g by

f= p(Vi+p+¢—1)
P +q

and

g= BVt +d 1)
P+q¢

lkeuchi and Horn introduce the Gaussian sphere, and show that gradient space corresponds to projecting the
N - Gaussian sphere onto the plane from its center, whereas stereographic space is the result of projecting from the
north pole (when the viewing dircction is from the south pole).

Although it cannot represent occluding boundaries, the mathematical development associated with
} gradicnt space is casicr, and so it is used in most of this scction. For a fixed distribution of light sourccs, and
fixed reflectunce characteristics, the image irradiance equation associates a brightncss valuc with cach surface
oricitation. Thus we can assign a brightness valuc to cach point of gradient space. ‘The representation is then i
called the reflectance map{HORN77). It is convenient to scale brightness values to the range [0, 1], and to make {
iso-brightness contours explicit. Figure 31 shows the iso-brightness contours for a L.ambertian reflector in the

casc of a single light source near the viewer. Figure 32 shows the result of moving the light source away from

the viewer, while figure 33 shows the reflectance map for a gloss surface which approximates white paint.
Having set up the representation of the output of shape from shading, we now consider some of the
algorithms that have been proposed for actually determining shape from an image. Rccall that the image
irradiance cquation is a (usually nonlincar) first order partial differential cquation. As such, it can be ap-
proached usmg one of the standard techniques for solving partial differential equations.  Horn [HORN7S)
applied the characteristic strip method of solving partial differential equations to reformulate the image ir-

radizmice cquation as a set of five ordinary diflerential equations. 'The solution surface is

fzy) ;2 =0, ()
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Figere 3. lso-brightness contours for a Lambertien refiector when the fight source is near the
olserver. The Inighiness at o point K detcnmincd by the cwning of the angle between the lovd

surtace forsal and the view weutor, (Reprauead from (HC WMNIL, lignee S}




Figpre 32, Iso-brightness contuurs for o Lambertisn aeflector when the it source is removed
ey the odverser, The riphiness a0 50 poimt s sheiermin o by the wrine of the ngle beiween
the b snbae sl and the weoior Jrom the sibine point 0 the 1 I sowce(Reproduced

froon [HORN?T, ligane of
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‘\ Fipere 30 Iso-hriphiness contours for a reflector that approxinktes white ghoss paint. Notice the -
peik relative (0 the Lambertian actlecor shown in ligure 13, conresponding to the mirror like
compment of rellection of goss paint. (Reproduced hiom (HORNTZ, ligurs 7




and the image irradiance equation is

I(z,y) — R(p,q) = 0. (2)

I'he surface normal has dircction ratios (p, ¢, —1). The characteristic strip method computes the solution
surface by finding a family of space curves (strips) whose local tangents all lie in the tangent plane of the
solution surface. Such a curve can be specificd by a one parameter family of points (2(s), y(s), 2(s)), where s

corresponds to the distance traversed along the curve. Differentiating cquation (1) with respect to 8, we find:

dr dy dz
i ol bk 0.
It follows that (4, 9¢, 42) lies in the tangent plane of the solution surface. Since pRy, + R, — (PR, + qRy)
is identically 7ero, (Rp, Rq, pRy, -+ qRy) also lics in the tangent plane. Fquating these two vectors gives the

following three cquations:

dz
@~
dy _
ds "
d

Z
= PR, + qR,,

Finally. differentiating cquation (2) with respect to z gives:

I = R]'P: -4- R_«ﬂ:-

Since py, - fry = q, we find

I == Rpp.r + R-/I’m

and so
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d
lz = d—’:
Similarly,
d
Iy = Ez‘.

The characteristic strip formulation was used by Horn [HORNT7S] as the basis of an itcrative computation
as follows. Suppose that we know that image point (z», y,) corresponds to a surface point at which the surface
gradient is (pn, gu). Refer to figure 34, which shows iso-brightness contours passing through (z,, y,) in the
image and (pn, g,.) in the reflectance map. Consider a stcp ds along the characteristic strip, from (zy, yn) t0
(Zn+1, Ya 1) and, correspondingly, from (pp, Gn) t0 (Pn-t-1, gn4-1)- The five ordinary differential equations
given above show that the step in the image is in the dircction (R, Ry). that is to say, along the normal to
the iso-brightness contour in the reflectance map. Similarly, the step in the reflectance map is in the dircction
normal o the iso-brightness contour computced in the image. In this way, knowing the reflectance map, one
can procced to compute a sequence of points and local gradients along the characteristic strip starting from a
point in the image at which the surface gradient is known. Figure 35 illustrates the results of applying Horn's
algorithm.

Onc problem with this method concerns the choice of the singular image point (o, ) required to start
the iterative process at which the surface gradient (py, q) is detennined uniquely by the intensity data. A
further problem is that Horn's algorithn depends on the assumption that the underlying surface is locally
convex at the singular point. Finally, the class of image irradiance cquations for which Horn's algorithm
works was unknown. (The latter question has recently been answered by [BRUSS1].) Consequently rescarch
was direcied o discover the criteria under which the shape of a surface is uniquely determined by an image,
One suggestion was that bounding or occluding contours provided such conditions. Along such contours, the

surfaice normal can be computed exactly from the image. However, accluding contours pose i problem for




Figure 3. ‘The basis of llor's iterative computation of shape from shading by the characteristic
strip et The surtace gadient at the imape point (.., 1,.) s knowo 10 be {(Pn,qn). lso-
hrightness contours are shovar in the image and in the retlectnes map. A shone movement in the -

imae alone the: characteriaoe sinip is n the dircction of the solid line, Shich is novmal o the
rarbigehtnecs comour in the eliectance map. The converse retation alse” holds. and s depivted
by the dotied line, '
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Figare 3. A somple result of Horn's characteristic strip algorithm. The figure shows the picture of
2 e wilh superimpoed characteristic srigs (top ligure) and contours (Inntom figure). Reproduced
fiom PHORNTS, digure 1}
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the gradient parameterization of local surface oricntation, namely that at least one of the gradients por q is
infinite. This led lkcuchi and Horn {IKEUS1]} to propose stereographic projection as defined above.

Ikcuchi and Horn [IKEU81] note some additional problems with the characteristic strip method. First,
since the iterative method outlined above proceeds unidirectionally along a characteristic strip, it cannot
exploit boundary conditions at both ends of the strip. Second, the build up of numcrical errors along any in-
dividual strip can be substantial. A novel feature of Horn's (HORN7S] algorithm is the simultancous develop-
ment of several characteristics to control the build up of error in any one. Woodham {WOOD81] observes
that one can solve for surface shape if onc makes a global assumption about the surface type, for .cxamplc that
it is convex, a ruled surface, or the surface of a generalized cylinder(see Section 6). Other authors propose
smoothness constraints derived from the fact that the integral of depth around a closed loop in the image is
zero [BROO79, STRAT79]. Ikeuchi and Homn {IKEU81] discuss a more direct formulation of a smoothness
condition that they state in terms of the stereographic parameterization of surface orientation. 'This cnables
them to use the bounding contour of an object as a source of boundary valt;cs for an itcrative computation
which fills in the surface orientation in the interior. Formally, denote the nth itcrative approximation to the
vilue of f; ; at image point (8, j) by I3, with an analogous formula for g; ;. f.cuing the local (four point)
average at the nth iteration be 7:' o fkeuchi and' Horn derive the following recurrence relation as the basis of

an iterative algorithm [IKEUSI):

Y -2n oR,
Y =714+ Nk =R 7l

Here, R, is the partial derivative of the reflectivity function R in the case of stercographic projection,
analugous to 12, which was used above in the characteristic strip method. ‘The resulting algorithm has been
tested on a varicty of images and works well, In particular, it appears to degrade gracefully as crrors are
introduced to the placement of the light seurce. the surfuce orientation on the boundary, and the nature of
the reflectivity assumed for the surfuce. Strong empirical evidence is provided that the algorithm converges,

althouph no proof is demonstrated. bn case the occluding contour is partially incomplete, Ikeuchi and Horn's

- - a—————
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algorithm still appears to converge, though it is not known at how many puints it is necessary o specify the
stereographic parameterization of the surface normal.

Bruss [BRUS81) has recently studicd some of the mathematical propertics of the image irradiance equa-
tion. First, she has shown that discontinuous solution surfaces can arise from a continuous image irradiance
cquation. [t follows that one cannot determine for a continuous image irradiance equation whether or not
there is an cdge. The curvature of a surface also cannot be determined in general from its image. As an
example, the image irradiance cquation z2 + y? = p? + ¢? has two different solution surfaces, onc of which
2 = zy consists entirely of hyperbolic points, while the other z = }(z? + y?) consists entirely of clliptic
points. However, Bruss has proved that there is only onc solution that is convex. She has also shown that
bounding conlours can be determined from the-image only when the image irradiance cquation is singular.
‘Fhis means that the reflectance function 12 and its first order partial derivatives are continuous, while the
intensity function [ is singular in z and/or y. For any given singular image irradiance cquation the points on
the occluding contour can be found by inspection of the intensity function I{z, y).

Bruss also studicd singular "eikonal” image irradiance equations that are of the formp? 4+ ¢ = [ (z, ).

If the intensity function I(x.v) vanishes to second order at the singular point, that is to say has the form

I(z,y) = az® + Pzy -+ 14 + 0(|2%| + 1)),

then there is cxactly onc positive locally convex solution surface in the neighborhood of the singular point.
‘This result is applied to show that if there is a closed bounding contour, the solution suiface is unique (up to
translation along the z axis). If cither the reflectance function is not p? -|- ¢* = I(z, y). the intensity function
does not vanish precisely to second order, or there is not a smooth closed bounding contour, there is not a
unigue solution surface. ‘The reflectance function p? -}~ g2 closcly models a number of practical situations such
as imaging with scanning clectron microscopes.

Woodham and Hom, Woodham, and Silver have developed a rather dilferent method for computing

shape from shading that mav prove very important in practice, even it it bears very little resemblance to the
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processes of human vision [WOOI81, HORN78b]. Suppose that we fix the view (camcra) position, and that
we sct up two light sources at diffcrent known points. Suppose that the intensity levels at any image point
(z, y) in the first and second images arc Ii(z, y) and [x(z, y). The first of these restricts the surface orientation
at (z, y) to the iso-brightness contour in the reflectance map corresponding to the brightness value computed
from Ii(z, y) (figure 36a). Similarly, the surface normal is constrained by the iso-brightness contour defined
by I(z, y) (figure 36b), and hence to their intersection (figurc 36¢c). A third light source provides complete
disambiguation. This process has been called photometric stereo, and can be implemented very cfficiently as
follows. First, there is a calibration phase in which an object whose surface shape is known, such as a sphere,
is illuminated in turn by the set of light sources and imaged. This genecrates a set of n-tuples of intensity
valucs (n is the number of light sources), each of which is associated with a known local surface orientation
on the known calibration object. The surface orientation distribution of an unknown object can then be
compuled by using the n-tuples of intensity values at cach corresponding image point as a lookup key into a
table. o keep the storage requirements of the algorithm within bounds, the intensity values arc quantized.
One current implementation quantizes intensity to ten values in cach of three measurements. Intermediate
intensity tiples are handled by intefpolation from the ncarest entrics in the table. The method, which has been
implemented by Silver, is fast and remarkably accurate [S11.V80]. Figure 37 shows the reconstruction of an
cgg after a calibration phase using a sphere. Figurc 38 is the supcrposition of a cross section of the known
surface onto onc computed by photometric stereo. Photometric sterco has been cxtended to handle objects
with specularitics by Tkeuchi {IK1:U81), and has recently been applicd to the industrial problem of bin-picking
[BIRKSI].

Optical flow

In Section 3.1.1, we surveyed the work of Marr and his group based on the detection of the important
intensity changes in an image. In panicalar, we mentioned the recent work of Marr, Ullman, and Richiter
on deiecting the direction of motion of a zero crossing by taking the time differential of AG*I(z, y, t). We

conclude this section with a biief disenssion of the work of Horn and Schunck (HORNS T that sroposes
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Figure J6. An illustration of photometric sterco. Suppose (4) the the brivhiness measured at the
pomt (z, ) in the find mage is 0.6 and (b) in the second imaze the bughiness at the sime point
is 0.2, (¢) superposition of the fint tvo constraints shows thal there are at most o consislent
stfirce grdients.




Fignre 3. The reconstiuction of an epg shape by Sive
slier a culibration phise using & sphere. The reflectnee of
hom [S).V80)

r's implementition of photometric stereo -

all mrfaces was Lambuttian, (Reproduced
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Figure 38, Comparison of the cross section of an ceg and a knob shape computed by photometric
c ~ stereo Colid lines) and the trie cross sections exteacted fiom photgraphs (dotied fines). (Reproduced
from [S11.Vis0)
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a method for computing optical flow by differentiating the brightness distribution in the image with respect
to time. Optical flow is the distribution of velocitics of apparent movement caused by smoothly changing
brightness patterns. It has been noted that optical flows encode rich information about a scene and observer
motion, and it has been suggestied that this information can be computed from the flow ficld. This position
is particularly associated with the followers of J. J. Gibson, who first studied flow ficlds [GIBSS50, GIBS66,
CLOCS80. KOEN75, KOEN76, KOENT77, PRAZSOi. In particular, it has been suggested that optical flow
facilitates object segmentation [NAKAT74, CLLOC80], computation of the parameters of the obscrver’s own
motion relative to the scene [PRAZ80, LONG80), and the determination of visible local sun;face normals
[PRAZ380).

The work on interpreting optical flow has gencrally assumed that the flow is given, that it is somchow
computed automatically and sufficicntly noise-free. “Velocity sensitive ncurons” have been postulated to com-
pute the optical flow in animate visual systcms [NAKA74). Horn and Schunck [HORNSIc] have studied the
generation of the optical flow from brightness patterns that vary smoothly wizh time. They restrict attention
to imaging a flat surfacc with uniform incident illumination, and smoothly varying reflectance. The image
brightness at point (z, y) at time ¢ docs not change, and so
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Expanding, by the chain rule we find

Lu4 Ly+ =0,

where (u, v} is the optical flow (4§, 3). This shows that the component of the flow ficld in the direction of
the brightness gradient (I, 1)) is

=k
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It is not possible to determine the component of the flow ficld perpendicular 10 the intensity gradient,
that is to say along the iso-brightness contours. In practice, quantization errors and nowse imiply that {{ 18 not

exactly zero. T'o account for this, an error term E; is introduccd and defined by:

Eb= zu-}-l,v-—-lg.

To compute the component of the flow field along iso-brightness contours requires an cxtri constraint.
Horn and Schunck derive a mcasure of the departure from smoothness of the flow [HORNSIc). Smoothness

can be cstimated by the square of the magnitude of the gradient of the optical flow velocity:

Su Su Sv Sy
B =Gr+GN +G)+G)

The estimate of the departure from smoothness and the change in brightness combine in a measure of the

crror:

E? = o’E2 +E}.

Using the calculus of variations, Horn and Schunck eventually derive the iterative computation:

“n+l =g" — ﬁ'llrﬁn + lyﬁ'n + I‘]
(412412
ot e g LiLa™ 4 L™ + 1)

@ R
Initially, the components (u, v) of optical flow arc assumed o be zero everywhere. ‘The algorithm works
well on synthetic patterns as tigure 39 shows,
3.3 Segmentation

A great deal of cflort continues to be expended on segmentation, a process that is esseatially the duad of
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Fizure 3. Opticl flow patterns computed by the Hom-Schumck wigorithm. (Reproduced from
(HIORNN ], figute 10]
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edge finding. Recall that edge finding has three stages. First, significant intensity changes arc detected and
localized. The feature puints are then grouped to form linear scgments. Finally, segments arc interpreted
as scene events, such as depth, reficctance, and shadow boundaries, as well as discontinuities in surface orien-
tation (true cdges). Analogously, the process of segmentation begins by isolating those regions of an image
in which there arc no significant changes of intensity, and adjacent regions are then grouped, or "merged”.
Finally, the regions arc interpreted as scenc events, typically visible surfaces, shadowed areas, or patches in
which the reflectance is uniform. As in the case of edge finding, the difficult issuc is to frame a precise
definition of "significant” so that scgmented regions correspond to the perceptual cntitics that afc their inter-
pretations.

Some authors [MARRT78, page 64] have concluded that scgmentation is an ill-defined operation, since
regions do not always correspond to portions of visible surfaces. Certainly, simple schemes for scgmentation
produce many sguiscus regions, just as simple approaches to edge finding ascribe significance (o spurious
intensity changes. Several authors have pointed out that region finding is no more, and no less, difficult than
cdge finding {HARA79, BINFS81], If segmentation and cdge finding differ at all, it is with respect to the

descriptions naturally associated with two-dimensional regions and onc dimensional segiments.

Jarly work on scgmentation implicitly modclled an image as a collage of regions that are homogeneous
in intensity and scparated by step changes. A slight refinement was to accommodate noise heuristically by
merging across weakest contrast boundaries [BRIC70, BARR71).

Onc approach to improving segmentation schemes is to incorporate better models of cdge finding. Each
of the processes for discovering feature points outlined in section J.1.1 can be adapted to segmentation.
Haralick [HARABS0, page 62] observes that two pixcls arc part of the same region if and only if there is no
significant difference between their associated sloped facets. If every intensity change uncovered by the Marr-

Hildreth theory of edge finding is significant then closed contours of zera-crossing: correspond w regions.

An alternative approach 1o improving scgmentation is to invoke domain specific semantic information

cither 1o encourage or inhibit the merging of regions [TENETT, SEF 81 Such schemes for segmentation are
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analogous to the semantically guided edge finders advocated by [BAJC7S, BAJCT76b, SHIR73).

Horn's work on shape from shading discussed in the previous section implies that there can be significant
variations in intensity within a perceptual surface. In general, only a planar surface produces a region that is
uniform in intensity (ignoring noisc). Scgmentation on the basis of intensity values is a heuristic consequence
of the carly preoccupation -with scenes composed of planar surfaces (sec section 2). According to the image
irradiance cquation, intensity is uniform within the image of a planar region because the surface orientation is
constant. Batlard [BAL1.80] suggests that the concept of segmentation is more naturally associated with repre-
sentations bascd on surfaces: Marr's 24D sketch, Horn’s needle map, and Barrow and Tenenbaum’s intrinsic
images. As before, segmentation is the dual of discovering significant changes, say of surface orientation or
depth. Such processes await investigation. Ballard proposes that the Hough transform can be gencralized for

this purpose [BALLS0].

Many surfaces have constant texture of color. Color may be perceptually uniform across a surface
cven if there is significant variation in intensity. Horn's work [HORN74), based on Land’s retinex theory,
cmbodied the idca of scgmentation on the basis of "lightness” for a two-dimensional world of "Mondrians”.
Iixtending Horn's work to three dimensions would not be trivial. Tomita, Yachida, and Tsuji [TOMI73] also
experimented with segmentation on the basis of color. Ohlander, Price, and Reddy [OHLA78] experimented
with multi-spectral descriptions including hue, saturation, and brightness. Brady and Wielinga [BRAI)78] note
that the Ohlander program works well on "patchwork quitt” images that are composed of large regions that
are uniform in one of its ninc descriptors. Tenenbaum and Barrow [TENET7] observe that because it is based

on this heuristic, the program is casily fooled, especially by 'rcgions of repcated texture.

3.4 Texture

Texture is a compelling visual cue to the propertics of a surface. We can recognize a region of an image
as grass or the fuliage of a bush or tree, and often we ¢an do so in a black-white image without the aid

ot color. We cnily distinguish velvet, woollen weaves, herring bone, and raflia. Pebbled paths stand out
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from the surrounding soil. It scems that most terrain classification from satellitc images is bascd on texture

discrimination and recognition.

Haralick [HARA?79] points out that although hundreds of articles have been written on the subject of
computer recognition and description of texturc ‘mostly from the standpoint of pattern recognition), few
precise definitions of texturc have been given. As a result, texture discrimination techniques are largely ad
hoc. Most accounts of texture are based on the idea that its distinguishing characteristic is regularity of the
"primitive” elements, called fexels, of which the texture is composcd, and of the spatial relationships between
texels. If there is wide variation in the size of individual blades of grass, or if the blades arc sparscly and non-
uniformly distributed in the image, the grassy texture appears "ragged”. In general, the strength of a texture is
determined by the regularity of its texels and regularity in the spatial relationships between the texcls. Zucker
proposes that ideal textures are completely regular and can be modclled by regular two-dimensional graph-s

|ZUCK76]. He suggests that naturally occurring texturcs are distortions of idcal textures.

We prefer a rather different view of texture, based on an idca of what purposc texturc perception
serves. A grassy lawn, the foliage of a tree, and a pcbbled path are all perceived as surfaces. Microscopic
variations in a surface determine its reflectance [HORN79), while large scale variations in a surface detcrmine
its topography. The processes of determining shape from stereo, contour, texture, and motion are discussed
in scction 4. Mostly they operate on isolated edges and regions found by onc of the processes discussed in
sections 3.1 and 3.3. We suggest that texture refers to surface variations intermediate between microscopic
reflectance changes and topographical changes made cxplicit by edge finding and segmentation. 1t follows that
descriptions of texture require the isolation of macroscopic surface facets and the determination of the spatial
relationships between such facets. In order to be perccived as a single surface, surfuce facets (texels) that are
physically close should have similar descriptions. Regularity is the physical basis for grouping faccts as a single
surface. Surface variations arc labelled reflectance, texture, or topographic depending upon the resolution at

which they are viewed. (Sce [MALE?7] for similar remarks).

‘The twin themes of statistics and structure run through most of the literature on texture, We commented
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above that rcgularity is central to texture. Inevitably, regularity has been modellcd statistically; for example,
the distribution of slopes of individual blades of grass has a strong peak and small variance. Statistics has
been applicd more or less uacritically to texture. Maleson, Brown and Feldman [MALET7] quip that “the
problem with statistical analysis is that if an inappropriate set of statistical measures is used, the final results
are meaningless. For this rcason, it is important to base statistics on a reasonable model of the phenomena to
be measured.” One approach to a ‘reasonablc model’ is to apply statistical analysis only to texels that carry

significant information about surface structurc, in particular, those isolated by cdgc finding and scgmentation.

Haralick [HARA79] has presented a good survey of purely statistical approaches to texture. Simple ideas
such as computing autocorrelation functions perform relatively poorty [WESK76). Bajcsy [BAJC73, BAJC76)
model regularity by pcriodfcity as determined from features of the polar form P(r, ¢) of the Fourier transform
of subimages. Combining all r to show the dependence on ¢, peaks in P,(¢) give cvidence of directional
texturcs such as grass. If there are no peaks in P(¢), Pylr) is investigated for peaks that give evidence of
blob-like textures. Textures nced to be strongly periodic to dbe found by the method. A better model was
introduced by Julesz [JULE62] and refincd by scveral authors, including Rosenfeld and Troy [ROSE70] and
Haralick [HARAT71). ‘The co-occurrence P(i, 5, d) specifies the relative frequencics with which two grey levcls
i and § occur scparated by a distance d. Haralick and Bosicy [HARA73] computed a number of features from
co-occurrence matrices and used them to classify terrain from satellite images, achicving success rates of over
80%. Julesz [JULE71] conjectured that textures can be discriminated by non-attentive vision if and only if
they differ in their second order statistics (cssentially their co-occurrence matrices). As originally furmulated,
co-occurrence matrices specify the relative frequencies of individual grey levels. Horn's work on shape from
shading shows how much information is confounded in a single grey level. Only when surfaces are cssentially
planar, for example satcHite imagery, is grey level a reliable basis for aggregation into regions corresponding
to surfaces. Haralick [[HARAT9, page 787] notes that while co-accurrence bascd on grey levels capturcs spatial
cdationships it does not capture shape aspects and hence docs not work well for textures composed of large-

area dexehs. In short, individuat pixcls are poor descriptors of surfixe facets.




n

Co-occurrence is not restricted to grey levels, however. Maleson, Brown, and Feldman [MALET7]
propose segmented regions as texels. They suggest region descriptors that arce insensitive to scale, such as
the oricntation of the major axis and eccentricity of the best fitting cllipse to a region. Details of the perfor-
mance of a system based on this technique on a range of textures has yet to be publishcd. Marr [MARR76]
suggests that texture discrimination based on co-occurrence matrices could be accounted for by discrimination
on ordinary statistics applicd to the primal sketch. The scheme was not implemented, nor ;avcrc descriptions
proposed for texture. To this end, the main advance has been due to Viinrotter, Nevatia, and Price [VII.NS1),
Their work is based on the Nevatia and Babu cdge finder (see section 3.1). ‘Textures are detected from edge
repetition arrays that specify the co-occurrence of edges in a particular dircction at a particular spacing. Once
detccted, texels are described in terms of their average size and intensity. Spatial organization is found by
relating texels in different directions. Figures 40 and 41 show the results computed by the system for raffia and

brick textures.
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Figure 40. a. image of raffia. b. Sample of output from analysis of edge repetition arrays. c.
abstract representation of the texcls found in the mffia image. d. Reconstruction of the raffia
image using the abstract texels (Reproduced from [VILNSI, figures 1-4]
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Figure 41. a. Two images of brickwork. b Hustration of abstract primitives found in the images
of a. c. Nlustration of the spatial organizatior

n found in the textures in g (Reproduced from
(Vitn81 figures 6,89] .




4. Determining shape from the primal sketch

4.1. Shape from sterco

‘I'he slight disparities in the images reccived by the left and right eyes enable humans to determine the

shape and relative depth of visible surfaces. The importance of automating stereo, and the difficulty of the
problem, is well stated in a recent overview of Defense Mapping Agency applications [MAHO81).

‘There have been scveral attempts to develop a computational theory of binocular stereopsis since
Julesz’s demonstrations in the carly 1960's that it is possible to fuse images stercoscopically without extensive
monocular processing. Julesz [JULE71] presented substantial experimental evidence regarding binocular fu-
sion of randem dot stcmoﬁrams. a perceptual device that he originawd(scc‘ﬁgure 42). The essence of stereo
vision is the matching of descri})tions computed from the images presented to the left and right cyes. The
Julesz. demonstrations argue that the descriptions to be matched are available at an carly stage of visual
processing. ‘I'wo candidate descriptions considered for matching to date are the image (area correlation), and a
representation of intensity changes (edge based stereo).

Julesz conjectured that sterco is a local paralicl process, and a number of algorithms have been designed
with this conjecture in r;vind. The first of these is duc to Dev [DEVTS], closely followed by Marr and Poggio
{MARRT76b, MARR76c]. Marr and Poggio call their algorithm "cooperative” by analogy with boundary valuc
computations in physics. The algorithm could equally well be called a relaxation process [[DAVIS1). Marr
IMARR78] notes a number of difficultics with such atgorithms as a theory of human sterco vision, namely
human tolerance for the defocussing of one image, and the apparent ubiquity of vergence movements of the
cyes as (wo images are fused. Perhaps more important arc the so-called hysteresis cffects in which images
arc matched only after o delay, or remain fused when they are pulled apart by an amount greater than is
apparcntly possible for maiching, Marr and Poggio [MARRT79b] argue that while hysterenis effects suggest
cooperativity, the cffect can also be achicved by postulating a dynamic memory in which intermediate resulis

of stereo processing can be stored.
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Figure 42. A random dot stereogram devized by [JULET1). First, an image is produced for the
lefl eye, composed of random dots. The view from the right image is dctermined by translating
each dot in the random dot image leftwards by an amount that depends on the relative distance
of the corresponding point in a conceptual scene. Some dots are occluded as a result. Other image
points that could nol be seen by the left eye are now visible in the right eyc. Such points arc
randomly filled by new dots.

Most work on arca correlation stereo [HANN74, QUAMT71, HENI78] operates on a succession of small
windows (typically 10 by 10) from onec image. For each window in the Ieft image, a search is conducted
for that window in the right image that optimizes a suitable corrclation relation between the grey levels in
the two windows. Arca corrclation has proven to be particularly effective in textured or smoothly shaded
arcas. [t has supported terrain following automatic guidance systems, and some automatic mapping systems
where the goal is to generate a digital terrain model associating & height with cach map point iinaged.
Arca correlation implicitly assumes that the left and right images dilter only in viewpoint, that is they only
differ photometrically.  As a result, arca corrclation petforms poorly near surface discontinuitics where s

photometric assumption is false. Conversely, edge based stereo assumes that the inviriance hetween the kit




Figure 43, The zero crossings located in the four chunnels of the Mags-Hildreth theory for the
random dot image shown in a. (Reproduced from Grimson's forthcomiag book fGRIMS1D.

and right images is gcometric. Baker and Binford [BAKE81] observe that in general the geometric assumption
implicit in cdge based sterco is more realistic than the photometric assumption implicit in arca corrclation. A
further shortcoming of current arca correlation techniques is that their accuracy is limited to a fraction of the
window sizc (typically 5 picturc clements). Fdges can normally be localized with subpixel accuracy [MACVS1,
MARR79a).

Implicit in the above remarks about the suitability of arca correlation for stereo matching of textured
arcas is a model of texture based on grey levels. We found carlicr (Section 1.4) that texture describes surface
ncrostruchure with texels corresponding to surface Facets. ‘The eatension of the approaches to edge based

~tereo o densely textured arcas awaits further work on edge and region based accounts of texture.

bdpe based stereo is sirong where arca correlation is weak, and conversely. An additional advantage of

i hoeed siereo tits potentiably greater efficiency. as theie are considerably fewer edges than giey levels,

Y &

-




83

Sterco rests upon, and providcs a stiff test for, any account of edge finding, In scction 3.1.1 we discussed a
number of approaches to edge finding. Marr and Hildreth's approach to detecting feature points has been ap-
plicd to stereo by Marr and Poggio [MARR79b). The left and right images are convolved with AG operators
as described in 3.1.1. Matching takes place between the paired sets of zero crossings. Figure 21 showed the
image of a coffee jar sprayed with spots of paint to yicld a Julesz-like random dot stercogram from a real scene,
and figure 24 showed the zero crossings produced by each of the fqur channcls proposed by the Marr-Hildreth
theory. Figure 43 shows the zcro crossings produced in cach of the four channcls for the random dot image
shown in figurc 43a. In both figures 24 and 43, it is evident that it is considcrably more difficult to cstablish
an optimal match between the output of the fine channel from the left and right images than between the out-
puts of the coarse channel. Exploiting this obscrvation, matching procceds from the coarsest channel, which
makes cxplicit gross detail and establishes a rough correspondence, down to the finest resotution channel.
This coarse-to-finc strategy, in which a rough plan is used to narrow the search space prior to more detailed
processing, is a basic idea in artificial intelligence. The application of a coarsé-w-ﬁne strategy like that in the
Marr-Poggio theory of sterco seems to have been used by Moravec [MORAS80] in a system constructed at
Stanford. Note that the coarsc-to-fine strategy may have to be modified for closely spaced edges that occur

with textured surfaces.

Once the match between the zero crossings in the two images has been cstablished for the four channels,
onc can compute the angular disparitics (or even distances) to matched zcro crossings, [GRIM8!] gives details.
Figures 44 and 45 show the disparity values computed for the coffec jar and the random dot stercogram shown
in figurc 42. A disparity valuc is recorded only where zero crossings from the two eyes are matched, and
so the disparity map is often discrete, Since we mostly perceive the world as composed of smooth surfaces,
it is necessary to consider possible interpolation processes for smoothly completing the surface orientation
map from the discrete sct of disparity values. This is a general problem and is discussed in the next section,
Cirinson’s reconstruction process computes the shape shown in fipure 6. Grimson's implementation of the

M.atr Pogpio sierco theory demonstrates all of Julesz's experimental findings, Tt has also been applivd 1o a
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Figure 44. The disparity map computed from the output of the stereo matcher for the coffee jar.
(Reproduced from Grimson's forthcoming book JGRIMSLD

small number of stereo pairs of natural images.

In scction 3.1 we characterized cdge finding as having three successive stages: determining feature points,
grouping them on the basis of their attributes, and mterpreting them as scenc events. The Marr-Poggio theory
matches feature point descriptions on the basis of the position and sign of the 7era crossing, before the feature
points arc grouped into lincar scgments. Recent psychophysical findings of Mayhew and Frisby [MAYI131]
seem (o indicate that it is necessary to match richer descriptions than zero crossings. Baker and Binford
[BAKEBT] and Arnold [ARNOT8] propose that ambiguitics can be resolved more efficiently and successfully
on the basis of the richer descriptions associated with points on lincar segments. Baker and Binford [BAKES1)
miilch points at various scales using the position, contrast, and stope of the scgment in the image, and the
intensities on buth sides of the intemsity change. “These separate picces of evidence are combined by a linear

weighting function. “The optimal imatch is found aloag horizontal scan lines using a tast lincar programming
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Figure 45. The disparity map computed from the output of the sterco maicher for the random
dot stereogram shown in figure 42. (Reproduced from Grimson's forthcoming book[G RIM81])

technique. Once cdges arc maiched, grey levels arc corrclated by a similar process. Figure 47 shows the results
computed by Baker and Binford's program on an image with both texture and edges. Arnold [ARNO78] also
filters putative matches according to the position, slope, and contrast of cdge scgments. ‘The edge segments
are found using Hueckel's surface fitting technique. Arnold claims that this is the program's main deficiency.
It is interesting to speculate how the Baker and Binford or Arnold algorithm might perform if they had the
Marr-Hildreth zero crossing data to work on. Alternatisvely, it is interesting (o ask how the richer descriptions
propused by Baker and Binford, Arnold, and Mayhew and I-‘}isby could be incorporated into the Marr-Poggio

theory.

Al of the programs discussed in this section, except Arnold's, assumic that the Teft and right images have
been icctified prior to stereo matching. That is, they assume that the images have been yotated, translated,

and scaled so that corresponding feature points can be found on the samne horizontal scan line. Arvald's




| 8
; [ ]
N .
|
)
)
N
4
. o

J

Figwre 46, The reconstnkicd coffee jar inerpolated by Grivnson's prosram i

) i A : K om the disparity
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Figure 47. Example results of Baker and Binford's stereo program. a. Stereo pair of images of
natural terrain. b. The ¢dges found in the images by a simple differencing operation. ¢. [lustration
of disparities computed for the images. (Reproduced from [BAKES], figures 10,11, and 11.))

program relies upon a rectification procedure developed by Moravee and Gennery [MORAT9, GENN79]. In
this procedure, “interesting” points such as corners arc found in both images, and an optimal match is found.
The tentative match is refincd using a high resofution arca correlator. A camera model solver computes the
dircction of the sterco axis, the relative rotation, scale change, and lateral translation between the keft and right
views. 'The ground plane is also determined. Lucas and Kanade have recently explored the application of a
Newton-Raphson like technique to solve for the camera parameters{.LUCA81]. Rectification rcﬁmins a difficult

open problem,

4.2 Shape from contour

Witkin [WITK81] has make a start on what seems to be a promising approach to computing shape from

a primal sketeh. His work concerns the perceived slant and tilt of a line driwing lying in a plane, such as the

——



map outline shown in figure 48. Witkin's approach relies on making the image forming process explicit, and
using it to derive a probability density function. Assume that the axes in the image and in the planar scene are
aligned, and denote the tangent direction measured in the image by a* and the tangent at the corresponding

point in the scene by 4. Image foreshortening gives the relation

where 7 is the tilt and o is the slant of the planar scene. A collection of measurements of a’ taken throughout
the image define a distribution of tangent directions. If we hypothesize particular valucs for o and 7, the above
relation establishes a distribution for 8. Given an expected distribution for (8,0, 7), the likelihood of any
observed distribution of a* can be evaluated. Witkin shows that the probability density function of (8, 0, ) is

#it |t turns out that the relative likclihood of (o, 7) given a sct A" of measurements of a; is

x—2sinocoso

1<i<n cos¥a; — 1) -} sin%(a} — r)coo’c.

The value of (g, 7) for which this estimator assumcs a maximum is the maximum likelihood estimate for
surface oricntation. Figure 49 shows the results of this procedure applied to a varicty of shapes, and compares
it to the tilt as cstimated by humans. Witkin found that tilt could be estimated considerably more accurately
than slant, a result he and Stevens [STEV80] established independently. In further work, Witkin assumes that

surfaces are locally planar and applics a similar analysis to computc local surface oricntation (WITK81}.

4.3 Shape from texture

Of the medules which scem o bridge the gap hetween the primal sketch and the surface orientation map,
none has reeeived quite as much attention from psychologists as the computation of surface oricutation and
depth Trom texture gradients, Ever since Gibson {G113S50) drew attention to their importance for computing

depth (tigare SO). they have heer a major concern of his fullowers. Stevens ISTHVERO] notes the simplifications
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Figure 48. A geographic contour shown at various oricntations, with the density function obtained
b that orientation. ¥ he density function is plotted by iso-deasity contonrs, with (o, 7} reprewemed
in pola form; o is piven by distnee 0 the origin, - by the angle. Ehe charp symaetrie peaks
canly visitile at higher stants are the magimum fikelihood estimates fos (v, 1), Reproduced from
IWIIKEL, figure 4]
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Figuee 49. Results of runninge Witkin's cstimation strategy. A member of shapes are shown ot
kefi. The center colmmn plots human csmaton of the it of the shapes. wnd the tipht column
shows the i vectors predicted by the eimation wieiegy. (Repoodeaced om IWIIK30 fgure 3]
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Figure 50. A texture gradient in a natural scene. (Reproduced from [GIBS50)

assumcd by most published analyses of texture gradients in the psychological litcrature. Typically, a horizontal
ground planc is assumed that stretches into the far distance. Stevens proposcs a two step computation; (1)
isolate "charactcristic directions” in which there is no depth change, and (2) compute depth from the slant and
tilt representation of surface orientation, ‘The idea has not been implemented. 1t assumes that primitive texcls
can be computed for natural images with sufficiently precise descriptions that the characteristic directions
can be computed accurately. Bajesy and Licberman [BAJC76a] basc the computation of texture gradients on
BBajesy's applicaton of the Fourier power spectrum to describing texture (see section 3.4) [BAIC73). All of the
other methods for computing texture discussed in section 3.4 could be adapted to the determination of texture

gradients.

Kender [KIENDS0O] has considered the contputation of shape from texture as an instance of & general

iethodology that vields "shape from” algorithms fromn a variety of image observables. The gencial plan of




Kender's approach has three parts:

o Primitive texels are extracted from the image. Kender assumecs that texels are the image of planar
surface facets, but he offers no guidance for computing them, »

o Fach texel is assigned a set of possible scene parameters. This is the .corc of the approach, He introduces
a set of normalized texture property maps (NTPM) that generalize, for example, Horn’s reflectance map
(scction 3.2).

o texels that are assumed to arise from neighboring surface facets in three space compare the constraints
on their sets of possible parameters, casting out thosc that are inconsistent on some appropriate grounds of
smoothness. As Kender points out, this step is similar to relaxation processing as advocated by Davis and
Rosenfeld [DAVIS1) '

Ballard's parameter networks bear many similaritics to Kender’s scheme [BALI81). Where Kender
prefers intersecting constraints, Ballard prefers adding them in accumulator arrays as part of his advocacy of
the generalized Hough transform,

Kender's NTPMs have four associated choices,

e Since the goal of a “shape from” algorithm is a precisc description of surface shape, an appropriate
parameterization of surface oricntation needs to be chosen.  Popular choices are gradient space (scction 2,
scction 3.2), the Gaussian sphere {HORNS2), and stercographic space [IKI2U8I) (see scction 3.2). In the
cxample presented below, we choose gradicnt space. ‘

o ‘| he imaging gecometry is a key component of texture, gradients.  The essential choice is between
perspective and parallel (orthographic) projection. Kender shows that while the mathematics of perspective
projection is more complex. the constrant it offers is considerably tighter. For mathematical simplicity, we
choose panallel projection,

o Asstmting that (exels have somelew been made available, several texture measures can be computed
and related to possible scene Trasments, Popalar choices are texel length (for example the length of the major

ani ot ane of the batrels shown i fure 50), the slope in the image of some direction asaciat d with the
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Figure 51. A texture with an unusual relationship between facets and the underlying planar
surface. (Reproduced from [KENDSO0, figure 3.4]

texel (compare [MALET?7], the angle in the image between two directions associated with the texel (compare
Kanade’s work on skew symmetry discussed in scction 2 [KENDSO)), or dot or edge density (compare
[ROSET70, ROSET1]. We consider length and slope in the example below.

e Finally, the way in which the facet that projects to the texel is connected to the underlying surface has
to he assumed. In figure 51 the facets can be interpreted as lying in the planc or protruding from it.

As an example of Kender's approach, consider the abstract texture shown in figure 52. We shall make
the following choices: gradient space representation of surface orientation, paralicl projection, and length
and image slope of texels. We shall assume that the texels all lic in a planar surface and form two mutually

orthogonal sets. We shall show that the orientation of the surface is completely determined.

We first consider the N'TPM corresponding to the Tength of a texel. Figure 53 shows a texcl of length L

and slope a in the image. Suppose that one end of the texel is at the image oripin and that the corresponding




Figure 52. An abstract texture. The horizontal and lexcls slanted at 45° are assumed 1o have the
same length in the image and in the scene. It is further assumed that the horizontal texels are
orthogonal to the slanted texels in the scene. (Reproduced from [KENDSO, figure 39]

scene point is (0,0,d). Suppose that the deprojection of the other end of the texel is (L cosa, Lsin a, e).
Since the deprojection of the texcl lics in the plane whose nommal is (p, ¢, —1), it follows that e — d =

pl.cosa + gL sina. The length of the deprojected texel is therefore

L, = L[l 4 (pcosa -+ gsin a)’]}.

Applying this to the texture shown in figure 52 we have Lo = L,, that is

2
(1+py=04+ D

or,
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Figure 53. Length and slope of a texel in the image.

p’—~q*—2pg=0.

We now consider the NTPM corresponding to image slope a of the texel shown in figure 53. Consider
a scene-based coordinate system defined by the normal to the planar facet, the line of steepest descent of
the facet, and a dircction chosen to make a right handed system. ‘Ihe gradient line has direction ratios
[ == (p,q,p* + ¢*). The normal to the plane is n == (p,q, —1). and so the third dircction of the scene-
based coordinate system is the cross product of these two, namely m = (g, -—p, 0). Consider the deprojection

v =: (cosa, sina,d) of the texel shown in figure 53. Kender [KENDRD, page 114] defines the slope of v te be

B. where

tanf vm
vl
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If we assume that  lics in the plane, so that v - 5 = 0, we find

gcosa — psina

(pcosa +gsina)(1+ p* + ¢3)°

tanfg =

Applying this to the texture shown in figure 52, the slope of the horizontal texels Sy is given by

I S
e e )

Similarly, the slope By of the slanted texels is given by

9—p
(e+ )1+ 9?4+ 4%

tanfy =

If we assume that the texcls all fic in the plane and that they form two orthogonal sets, we have

tanf - tan fy = —1.

Solving. we get another quadratic in p and . When combined with the length constraint we can solve up
to Necker reversal. Kender points out that if pcrspéc(ivc projection is assumed the sense of the Necker reversal

is often resolved.

4.4 Shape from motion

Just as the ideas about shape from shading and edge detection described in Scctions 3.1 and 3.2 lead
naturally to progress on motion perception. so do the developments surrounding the primal skctch, The first
treatment of this issuc is duc to Ullman [ULEMT8], who considered the problom of establishing a correspon-
dence between the primal sketches in two successive image frames. Ullman atso studied the problem of
computing the structure of a rigid body from the correspondences of a small numiber of points in a number of

views. It tnrns out that remarkably foew of cach are required to compute rigid three-dimensional structure. Tn
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modelling normal vision of course, sparsity of information is manifestly not the problem? A diffcrcn; way to
vicw such results is that they give information about how local an algorithm to deteremine three-dimensional
structure can be. More recently, Webb [WEBB80, WEBBS1], Hoffman and Flinchbaugh [HOL'i“80], and
Rashid [RASH80] have considered the problem of reconstructing motion in depth from the output of the
correspondence computation. Flinchbaugh and Chandrasckharan [F1.IN81] coin the term "dynamic primal
sketch™ to describe the representation they compute, since it associates an image velocity measure with every
primal sketch clement. Flinchbaugh and Chandrasckaran [FLINS1] have proposed a number of grouping
primitives to apply to the dynamic primal sketch, analogous to those discussed above for the (static) primal

sketch,

5. Modules that operate on representations of surface shape

Many of the visual processes discussed in wic previous sections compute the shape of a visible surface by
finding the local surface orientation everywhere within its boundarics. This includes the work of Horn and
his collcagues on shape from shading (Section 3.2), the computation of shape from contour investigated by
Witkin (section 4.2), and the interpretation of optical flow [PRAZ80, C1.OC80]. On the other hand, shape
from sterco yields disparity only at the discrete sct of zero crossings. A change of coordinates can convert
the angular disparities to depths, but to compute the local surface normal everywhere on the visible surface it
is necessary to interpolate a smooth surface from the discrete set of given points. We shall discuss this issue
below. Binocular sterco is not the only module that gencrates an incomplete surface orientation map. Shape
from texture (section 4.3) computations yicld (constrained) surface oricntations only at texture points, which
may be more or less denscly distributed. Stevens {STEV81] considers the interpretation of surface contours,
and finds that they strongly constrain the perception of the underlying surface. Horn [HORNBS2| and Marr
[MARR78a] suggest that in addition to focal surfuce ovientation, it is advantageous to make explicit the discon-
tinuites in surface orientation and depth. 1Uis not yet clear how surface notmals should be parameterized, nor

how st nrately their values should be represented. Moreover, substantial advantages are likely to acerue from
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attaching texture and color descriptors to visible surfaces, but the details are as yct unclear.

Onc might also consider maintaining scparate representations corresponding to the four (or more) chan-
nels defincd in the Marr-Hildreth theory of edge detection (described in Section 3.1.1 and uscd in the Marr-
Poggio theory of stereo). This would cnable the visible surfaces in a Scene to be represented at different scales,
It is clear that surface information needs to be made explicit at different levels of resolution: a pebbled path
may be considered approximately planar by a human who is walking along it. On the other hand, an ant
or person on roller skates may find the same path extremely difficult to navigate; in such cases the path is
unlikely to be perceived as planar. As this example indicates, the level of resolution of a representation is
determined largely by the process operating upon the representation, and there has been little investigation of
such processes to date. Hinton shows that different representations of the same volume and set of surfaces
can have a significant influence on the difficulty of perceptual tasks {HINT79]. Similarly, we have seen that
grouping processes play an important role a severa) stages of visual proccssing_, from cdge finding to the inter-
pretation of texture. Such processes have not yet been extensively investigaicd at the level of representations of
surface orientations.

Perhaps the most important operation performed by any vision system is recognition. Representations
below the level of surfaces are generally too unstructured to support recognition. Onc notable exception to this
is recognition of surface type from texture information. Interestingly, we suggested in section 1.4 that texture
is a form of surface representation. It has been argucd that the surface oricatation map is also inappropriate,
in cssence because it is viewer centered. Marr [MARR78a) notes that we arc capable of recognizing objects
from a wide varicty of views, against a wide varicty of backg_rounds. To achicve this, he suggests a repre-
sentation which makes explicit the three dimensional ("volumetric”) nature of objects. We shall consider such
representations in the next Scetion. For the moment we need only note that it is highly non-trivial to extract
soluimetric representations from a surface bascd representation, and so practical advantages might accruc from

recognition based on the surface avientation map.

The case against surfice biscd models of objects for recognition is essentially an argument against mul-
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tiple views. Horn [HORNS2] notes that irrespective of the force of the argument as regards general human
vision, surface based modcls may still support important practical applications. For example, because of the
limitations imposcd by methods of manufacture, many industrial parts only assutne a small number of stable
configurations. Symmmetry further reduces the number of substantially different views of a part. Since there are
typically only a small number of parts in a parts mix, onc can store a representation computed from the surface
oricntation map corresponding to each different view of a part in each configuration. Horn further suggests
that it may be sufficient to throw away positional information and model an object by the distribution of its

surface normals on the Gaussian sphere [HORNS2]. Figure 54 illustrates the idea.

Perhaps the most difficult problem which sighted people constantly rely on their vision systems to help
them to solve is the perccption or planning of movements through cluttered space. The cxperience of
programming robots to avoid obstacles and discover a satisfactory trajectory between two positions reveals
the staggering difficulty of the gcometric problems involved, problems which the human visual system solves
effortlessly. Space, considered as an object, typically occupies a volume and consists of a surface whose
descriptions push current representational frameworks to their limits, if not far beyond them. A solid start has
been made on the problems of spatial planning by Lozano-Percz [1.0ZA81), who represemts the set of possible
configurations which an object can assume in the presence of obstacles and presents cfficient algorithins for
computing ncar optimal trajectories. A further important application lies in making precise the rather vague
notion of cognitive map. 1t is usually supposed [LYNCG0] that this only refers to object representations.
Actually it scems that we have quite considerable navigational processes which operate on the surface orienta-

tion map.

We conclude this section with a discussion of the problem of interpoliting a smooth surface from a
discrete sct of points, such as the disparity map computed by Grimson’s implementation of the Mare-Poggio
theory of sterco (section 4.1). One approach might be to apply the work on Coons patches, Bévier surfaces,
and Ferguson surfaces developed for work in computer aided design (CAD) and computer aided manufacture

(CAN) |FAUXT9). Itis however worth asking whether the interpolated surtiice can be constraned by what we
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know about human vision, by isulating constraints that have perhaps not figured largely in the development of

CAD/CAM. Essentially, two such constraints have been uncovered, and are currently receiving atiention.

The first was introduced by Grimson [GRIM81]. Suppose that Dy, is the disparity map from which
we are to interpolate a smooth surface S. Horn's work on image formation tells us how to construct the image
Im(S), and this cnables us to compute the sct of zero crossings, and hence predict a disparity map D, redict-
The actual and predicted disparity maps should agrec cverywhere, Actually, one does not explicitly construct
the image of the interpolated surface and the predicted disparity map. Rather, it is used implicitly in deriving
a number of theorems which constrain the surface S. Grimson has coined a suggestive slogan for this analysis:
no information is information, since the absence of an initial valuc at the point (z, y) in the actual disparity map

mecans that the gradient of the intcrpolated surface S cannot change too rapidly there.

The second constraint is ba;cd on the idca that the human visual system constructs the most conservative
solution consistent with the data. Figure S5 is reproduced from [BARR81b), and shows a set of possible space
curves, all of which produce an clliptical image. Significantly, we arc unaware of most such possibilitics, espe-
cially those that are discontinuous. We arc able to interpolate smooth curves and surfaces without involving
rich semantics. It also sccms that the shape of the boundary plays the most significant role in detcrmining
the interpolated surface (see for examplc tigure 56, which is reproduced from [BARR81b]. Taken together,
thesce idcas suggest that the interpolation process can be modelled in terms of the calculus of variations (see for

example [COURJ7, volume 1]).

The idea is to choose an appropriate "performance index™ P and define the interpolated surface to be
that which minimizes the integral of P subject to the boundary constraints. This idca has been cxplored by
a number of authors. Unlike the ordinary differential calculus, it is not generafly the case that a minimal
surface exists, even for "plausible” performance indices. 1or example, it is not clear that there is a unigue
surface that minimizes th; Wian curvaturc. Grimson [GRIM81] notes that the existence of
a minimizing surface can be formally guaranteed if the performance index satisfies the technical condition of

being a seminorm. He suggests the quadratic variation, which is defined o be 4 4 2/’f_y i fl o and shows
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how to construct the iteration operator shown in figure 57. The squarc Laplacian f2, + jw2 also satisfics the
seminorm condition. Brady and Horn [BRAD81b] show that any quadratic form in the second derivatives f; .,
Jey. and f,y is a scminorm and leads to a unique minimal surface. They further show that the rotationally sym-
metric performance indices form a vector space spanned by the quadratic variation and the square I.aplacian,
Since both operators satisfy the same Euler equation A%f = 0, they cannot be distinguished away from given
boundary points. Brady and Horn apply the statics of a thin plate to show that the quadratic \;ariation provides
the tighter constraint. Grimson notes that the null space of the quadratic variation is larger than that of the
square Laplacian, containing for cxample the function f(z, y) = zy [GRIMS1]. He has worked out scveral
cxamples showing that the quadratic variation leads to surfaces that accord better with human intuition. Brady
and Grimson (forthcoming) use these ideas about surface interpolation to propose that subjective contours

arise from surface perccption.

Barrow and Tenenbaum [BARR81b] observe that in order to interpolate the circular cross scction of a
cylinder and sphere it is sufficient to assume that the curvature varies linearly in the image. They suggest that
in general one should choose a lincar expression for the curvature to minimize the least squares crror. Brady,
Grimson, and Langridge [BRAI)B0b] use an approximation to the one dimensional quadratic variation /‘;, to
arguc that subjective contours arc cubics. ‘The exact minimal integral curvature curve has recently been found

by Horn {HHORNS1b).

6. Viewpoint independent representations of ohjects

The surfice based representations discussed in the previous section are different for cach particular view-
point. Fach viewpoint of cach viewer in a scene defines a coordinate frame in terms of which the points that
are visible from that viewpoint can be described. Other coordinate frames are naturally associated with the
objects and surfaces inaseene, and it s often more convenient t describe selative positions and movements
i those franes rather than in the ones lined up with a particular viewpoint, In many scenes there is a natual

“elobal” comdinate frane that is independent of any viewpoint, For cvample, an airplane or ship has an

- .
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( . Figere 55 An clliptical image, and some of the space curves that might have genersted it.
{Reproduced from [BARRSED, figure 3-2)

e
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Figure 56, tmcipoliion of a cylinder from a aumber of stimuli, including a sithonate, and hall
umlc inniges prsincad fom a varicty of seflectione fnctions, (Reprodiced from [RARRS D, figure
2-3 '
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Figure §7. The surface interpolation operator derived by Grimson from minimizing quadratic
variation.

associated frame defined by its bow, stern, starboard, port, up, and down; rotations about those axes specify

the yaw, roll, and pitch. A football ficld or a room has a natural frame defined by the sidelines or walls and by
the gravitational vertical.

Points car = represer  n homogencous coordinates, for example, and frame transformations by 4 x 4

natrices that consist of a transfation, a rotation, and a scale factor, ‘This approach has proved valuable in
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computer graphics [CARL.78) and robotics [PAUL79]. Rotations can also be described as quaternions with a
saving of storage [I'AYL79, BROO80). Frames can specify the transformation to scene coordinatcs, and hence
by composition rclate different viewpoints. Brooks and Binford [BROO80] note that onc important use of
inter-relating frames by composition is to make affixment relations explicit. The coordinate frame local to an
airplane nceds to be related to that defined by the runway on which it stands. The programming language AL

[FINK74] was the first to provide a mechanism for the automatic maintenance of affixment relations.

Most objects are composed of connected parts, cach of which can be described in its own local frame. A
person has two arms, cach of which is further subdivided into an upper arm, a forearm, and a hand. [.ike any
structured representation, the important issues concern the choice of “primitives” and the means by which one
part of a representation is related to another. Consider the latter issue first. Work in Robotics has adopted
the Hartenberg-Ienavit notation for kinematic chains to describe the geometric inter-relationships between
successive links of an arm, a leg, or the scveral legs of a mobile robot [PAUL79). Marr and Nishihara's

suggestion [MARRT8b] is a special case of this notation,

One approach to primitives is to consider objects to be coinposed of instances of a small set of prototype
volumes, such as spheres, blocks, and triangular prisms [BRAI73]. This approach has been much used in
CAI/CAM. The problem is that cven simple objects have a complex description. One might add more
and more primitives, such as truncated cones and pyramids, to reduce this complexity. Binford [BINF71}
suggested another approach that has proved very fruitful. He introduced a more general class of volumes
called generalized cones which includes as subclasses the primitive volumes mentioned previously. A general-
ived cone describes a volume by sweeping a cross section area along a spice curve, called the “spine”, while
detorming it according 1o some sweeping rule. Figure S8 is reproduced from {BROO]1) and shows a number
of generalized cones. Notice that although clongation is the characteristic property of generalized cones, they
are not necessarily clongated. Nor do they reguire a circular cross scction. Nevertholess, gencralized cones
are patticululy well suited to describing objects which have a natural ixis. This certainly includes growth

srdctures. Hallerbach [HOLE 7S] noted it Greek amphora are abso well dearibed by generalized cones, the




A

107

spine being a result of the process of manufacture on the potters wheel. Similar considerations apply to objects
turned on a lathe or produccd by extrusion. Conversely, objects produced by moulding, beating, welding, or

sculpture tend to be awkwardly described in terms of generalized cones.

A major issuc in description and recognition arises from the vast number of objects that we can distin-
guish. This lcads to an enormous data base of models and makes the indexing prucess of crucial ilmportance,
‘The problem is ubiquitous in artificial intelligence and has produced a number of schemes for maitching on
the basis of partial descriptions. One recurrent theme is the use of abstraction to produce a smaller search
space, the solution being used w guide further scarch in a less abstracted version. At a suitably high level of
abstraction this can be recognized as the process which underlies the matcher in the Marr-Poggio theory of
stereo deseribed in Section 4.1, [n the specific case of vision, Nevatia and Binford [NEVAT77) and Marr and
Nishihara [MARR78b)] discuss various schemes for indexing. Agin [AGIN72], Nevatia and Binford [NEVAT7],
and Marr and Nishihara [MARR78b] note that a kincmatic linkage can gencratly be approximated by a single
cone. Such approximate descriptions provide for hicrarchical descriptions at a uscful variety of scales. Often,
the most uscful approximation is based on the most proximal link, more detailed descriptions deriving from
applying the same process to the distal links of the chain. Brooks and Binford |BROO80] usc subcategories of
objects to achieve property inheritance and facilitate indexing. I‘or example, they exploit the fact that a Bocing
747-SP is a special kind of Bocing 747 (with slight variations pertinent to recognizing onc), and a Bocing 747 is
a special kind of wide bodied jet (distinguished from other aircraft such as Bocing 727's on the basis of overall

length and width to length ratio.)

Brooks and Binford {BROOS0, BROOS1] draw attention to the need to incorporate constraints into ob-
ject descriptions. FFor example, a person has two legs which are af (roughly) the samne length, and are roughly
as long as the person's body. ‘I'he actual sizes scale with (a priori unknown) cainera position.  As usual,
constraints propagate. For example, the engine pods of a jet are deployed symmietrically on the front wings on
cither side of the fuselage. Finding an aircraft wing constrains the overall scale of the aircraft, and hence the

feneth of the fuselage. Such comstraints are represented naturally by nunierical inequalitics. Braoks [RROO8T]
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describes a program that determines the solutions of a set of such incqualitiics. If an object recognized as a
person’s body is much larger than onc thought to be a tree, ther the person is probably much nearer than the
tree. Mechanisms for taking into account relatively remote possibilities such as giants and toy trees have been
proposed (for example, [ANDES1]

Finally, we consider the process of extracting from an image the spine, cross section function, and sweep-
ing rule which dcfine a gencralized cone. The work on this problem to date requires a number of simplifying
assumptions. For example, Nevatia and Binford implicitly assume that the cross section function is circular
INEVAT7]. Marr [MARRT77] considered the problem in considerable detail and showed how, in a restricted
casc, a straight spine can be extracted from the inflection points on the bounding contour of an object. Brady
showed that the spinc can be extracted more reliably by using stationary points of curvature [BRA1I79b).
Marr's work assumes that the bounding contour is planar, which is overly restrictive [BRUS81]. He also

propuosed a classification of the images of the joins between two straight spine cones.
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